AEC3: ERLE improvements

The ERLE computation was improved by two means:
- The update function was always called and just parts of the internal code reacts to the converged filter flag
- When computing the ERLE, the ratio of energies is now computed using more points and, therefore, a more robust estimation is achieved.

Bug: webrtc:9284
Change-Id: Ie4f871f19cfad1a13741352ddd7b0a27ad6c3fb6
Reviewed-on: https://webrtc-review.googlesource.com/77767
Reviewed-by: Per Åhgren <peah@webrtc.org>
Commit-Queue: Jesus de Vicente Pena <devicentepena@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#23329}
This commit is contained in:
Jesús de Vicente Peña 2018-05-21 15:23:48 +02:00 committed by Commit Bot
parent 8436a699a9
commit 666becad58
4 changed files with 80 additions and 54 deletions

View File

@ -153,10 +153,12 @@ void AecState::Update(
}
// Update the ERL and ERLE measures.
if (converged_filter && blocks_since_reset_ >= 2 * kNumBlocksPerSecond) {
if (blocks_since_reset_ >= 2 * kNumBlocksPerSecond) {
const auto& X2 = render_buffer.Spectrum(filter_delay_blocks_);
erle_estimator_.Update(X2, Y2, E2_main);
erl_estimator_.Update(X2, Y2);
erle_estimator_.Update(X2, Y2, E2_main, converged_filter);
if (converged_filter) {
erl_estimator_.Update(X2, Y2);
}
}
// Detect and flag echo saturation.

View File

@ -25,6 +25,9 @@ ErleEstimator::ErleEstimator(float min_erle,
max_erle_hf_(max_erle_hf) {
erle_.fill(min_erle_);
erle_onsets_.fill(min_erle_);
Y2_acum_.fill(0.f);
E2_acum_.fill(0.f);
num_points_.fill(0);
hold_counters_.fill(0);
coming_onset_.fill(true);
erle_time_domain_ = min_erle_;
@ -35,7 +38,8 @@ ErleEstimator::~ErleEstimator() = default;
void ErleEstimator::Update(rtc::ArrayView<const float> render_spectrum,
rtc::ArrayView<const float> capture_spectrum,
rtc::ArrayView<const float> subtractor_spectrum) {
rtc::ArrayView<const float> subtractor_spectrum,
bool converged_filter) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, render_spectrum.size());
RTC_DCHECK_EQ(kFftLengthBy2Plus1, capture_spectrum.size());
RTC_DCHECK_EQ(kFftLengthBy2Plus1, subtractor_spectrum.size());
@ -45,9 +49,9 @@ void ErleEstimator::Update(rtc::ArrayView<const float> render_spectrum,
// Corresponds of WGN of power -46 dBFS.
constexpr float kX2Min = 44015068.0f;
constexpr int kOnsetSizeBlocks = 4;
constexpr int kPointsToAccumulate = 6;
constexpr int kErleHold = 100;
constexpr int kErleOnsetHold = kErleHold + kOnsetSizeBlocks;
constexpr int kBlocksForOnsetDetection = kErleHold + 150;
auto erle_band_update = [](float erle_band, float new_erle, float alpha_inc,
float alpha_dec, float min_erle, float max_erle) {
@ -61,36 +65,49 @@ void ErleEstimator::Update(rtc::ArrayView<const float> render_spectrum,
// Update the estimates in a clamped minimum statistics manner.
auto erle_update = [&](size_t start, size_t stop, float max_erle) {
for (size_t k = start; k < stop; ++k) {
if (X2[k] > kX2Min && E2[k] > 0.f) {
const float new_erle = Y2[k] / E2[k];
if (coming_onset_[k - 1]) {
hold_counters_[k - 1] = kErleOnsetHold;
coming_onset_[k - 1] = false;
if (X2[k] > kX2Min) {
++num_points_[k];
Y2_acum_[k] += Y2[k];
E2_acum_[k] += E2[k];
if (num_points_[k] == kPointsToAccumulate) {
if (E2_acum_[k] > 0) {
const float new_erle = Y2_acum_[k] / E2_acum_[k];
if (coming_onset_[k]) {
coming_onset_[k] = false;
erle_onsets_[k] = erle_band_update(
erle_onsets_[k], new_erle, 0.15f, 0.3f, min_erle_, max_erle);
}
hold_counters_[k] = kBlocksForOnsetDetection;
erle_[k] = erle_band_update(erle_[k], new_erle, 0.05f, 0.1f,
min_erle_, max_erle);
}
num_points_[k] = 0;
Y2_acum_[k] = 0.f;
E2_acum_[k] = 0.f;
}
if (hold_counters_[k - 1] > kErleHold) {
erle_onsets_[k] = erle_band_update(erle_onsets_[k], new_erle, 0.05f,
0.1f, min_erle_, max_erle);
} else {
hold_counters_[k - 1] = kErleHold;
}
erle_[k] = erle_band_update(erle_[k], new_erle, 0.01f, 0.02f, min_erle_,
max_erle);
}
}
};
constexpr size_t kFftLengthBy4 = kFftLengthBy2 / 2;
erle_update(1, kFftLengthBy4, max_erle_lf_);
erle_update(kFftLengthBy4, kFftLengthBy2, max_erle_hf_);
if (converged_filter) {
// Note that the use of the converged_filter flag already imposed
// a minimum of the erle that can be estimated as that flag would
// be false if the filter is performing poorly.
constexpr size_t kFftLengthBy4 = kFftLengthBy2 / 2;
erle_update(1, kFftLengthBy4, max_erle_lf_);
erle_update(kFftLengthBy4, kFftLengthBy2, max_erle_hf_);
}
for (size_t k = 0; k < hold_counters_.size(); ++k) {
for (size_t k = 1; k < kFftLengthBy2; ++k) {
hold_counters_[k]--;
if (hold_counters_[k] <= 0) {
coming_onset_[k] = true;
if (erle_[k + 1] > erle_onsets_[k + 1]) {
erle_[k + 1] = std::max(erle_onsets_[k + 1], 0.97f * erle_[k + 1]);
RTC_DCHECK_LE(min_erle_, erle_[k + 1]);
if (hold_counters_[k] <= (kBlocksForOnsetDetection - kErleHold)) {
if (erle_[k] > erle_onsets_[k]) {
erle_[k] = std::max(erle_onsets_[k], 0.97f * erle_[k]);
RTC_DCHECK_LE(min_erle_, erle_[k]);
}
if (hold_counters_[k] <= 0) {
coming_onset_[k] = true;
hold_counters_[k] = 0;
}
}
}
@ -98,17 +115,19 @@ void ErleEstimator::Update(rtc::ArrayView<const float> render_spectrum,
erle_[0] = erle_[1];
erle_[kFftLengthBy2] = erle_[kFftLengthBy2 - 1];
// Compute ERLE over all frequency bins.
const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f);
const float E2_sum = std::accumulate(E2.begin(), E2.end(), 0.0f);
if (X2_sum > kX2Min * X2.size() && E2_sum > 0.f) {
const float Y2_sum = std::accumulate(Y2.begin(), Y2.end(), 0.0f);
const float new_erle = Y2_sum / E2_sum;
if (new_erle > erle_time_domain_) {
hold_counter_time_domain_ = kErleHold;
erle_time_domain_ += 0.1f * (new_erle - erle_time_domain_);
erle_time_domain_ =
rtc::SafeClamp(erle_time_domain_, min_erle_, max_erle_lf_);
if (converged_filter) {
// Compute ERLE over all frequency bins.
const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f);
const float E2_sum = std::accumulate(E2.begin(), E2.end(), 0.0f);
if (X2_sum > kX2Min * X2.size() && E2_sum > 0.f) {
const float Y2_sum = std::accumulate(Y2.begin(), Y2.end(), 0.0f);
const float new_erle = Y2_sum / E2_sum;
if (new_erle > erle_time_domain_) {
hold_counter_time_domain_ = kErleHold;
erle_time_domain_ += 0.1f * (new_erle - erle_time_domain_);
erle_time_domain_ =
rtc::SafeClamp(erle_time_domain_, min_erle_, max_erle_lf_);
}
}
}
--hold_counter_time_domain_;

View File

@ -28,7 +28,8 @@ class ErleEstimator {
// Updates the ERLE estimate.
void Update(rtc::ArrayView<const float> render_spectrum,
rtc::ArrayView<const float> capture_spectrum,
rtc::ArrayView<const float> subtractor_spectrum);
rtc::ArrayView<const float> subtractor_spectrum,
bool converged_filter);
// Returns the most recent ERLE estimate.
const std::array<float, kFftLengthBy2Plus1>& Erle() const { return erle_; }
@ -41,8 +42,11 @@ class ErleEstimator {
private:
std::array<float, kFftLengthBy2Plus1> erle_;
std::array<float, kFftLengthBy2Plus1> erle_onsets_;
std::array<bool, kFftLengthBy2Minus1> coming_onset_;
std::array<int, kFftLengthBy2Minus1> hold_counters_;
std::array<float, kFftLengthBy2Plus1> Y2_acum_;
std::array<float, kFftLengthBy2Plus1> E2_acum_;
std::array<int, kFftLengthBy2Plus1> num_points_;
std::array<bool, kFftLengthBy2Plus1> coming_onset_;
std::array<int, kFftLengthBy2Plus1> hold_counters_;
float erle_time_domain_;
int hold_counter_time_domain_;
const float min_erle_;

View File

@ -9,6 +9,7 @@
*/
#include "modules/audio_processing/aec3/erle_estimator.h"
#include "api/array_view.h"
#include "test/gtest.h"
namespace webrtc {
@ -22,7 +23,7 @@ constexpr float kMinErle = 1.0f;
constexpr float kTrueErle = 10.f;
constexpr float kTrueErleOnsets = 1.0f;
void VerifyErleBands(const std::array<float, kFftLengthBy2Plus1>& erle,
void VerifyErleBands(rtc::ArrayView<const float> erle,
float reference_lf,
float reference_hf) {
std::for_each(
@ -33,7 +34,7 @@ void VerifyErleBands(const std::array<float, kFftLengthBy2Plus1>& erle,
[reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); });
}
void VerifyErle(const std::array<float, kFftLengthBy2Plus1>& erle,
void VerifyErle(rtc::ArrayView<const float> erle,
float erle_time_domain,
float reference_lf,
float reference_hf) {
@ -71,15 +72,15 @@ TEST(ErleEstimator, VerifyErleIncreaseAndHold) {
FormFarendFrame(&X2, &E2, &Y2, kTrueErle);
for (size_t k = 0; k < 200; ++k) {
estimator.Update(X2, Y2, E2);
estimator.Update(X2, Y2, E2, true);
}
VerifyErle(estimator.Erle(), estimator.ErleTimeDomain(), 8.f, 1.5f);
FormNearendFrame(&X2, &E2, &Y2);
// Verifies that the ERLE is not immediately decreased during nearend
// activity.
for (size_t k = 0; k < 98; ++k) {
estimator.Update(X2, Y2, E2);
for (size_t k = 0; k < 50; ++k) {
estimator.Update(X2, Y2, E2, true);
}
VerifyErle(estimator.Erle(), estimator.ErleTimeDomain(), 8.f, 1.5f);
}
@ -94,21 +95,21 @@ TEST(ErleEstimator, VerifyErleTrackingOnOnsets) {
for (size_t burst = 0; burst < 20; ++burst) {
FormFarendFrame(&X2, &E2, &Y2, kTrueErleOnsets);
for (size_t k = 0; k < 10; ++k) {
estimator.Update(X2, Y2, E2);
estimator.Update(X2, Y2, E2, true);
}
FormFarendFrame(&X2, &E2, &Y2, kTrueErle);
for (size_t k = 0; k < 200; ++k) {
estimator.Update(X2, Y2, E2);
estimator.Update(X2, Y2, E2, true);
}
FormNearendFrame(&X2, &E2, &Y2);
for (size_t k = 0; k < 100; ++k) {
estimator.Update(X2, Y2, E2);
for (size_t k = 0; k < 300; ++k) {
estimator.Update(X2, Y2, E2, true);
}
}
VerifyErleBands(estimator.ErleOnsets(), kMinErle, kMinErle);
FormNearendFrame(&X2, &E2, &Y2);
for (size_t k = 0; k < 1000; k++) {
estimator.Update(X2, Y2, E2);
estimator.Update(X2, Y2, E2, true);
}
// Verifies that during ne activity, Erle converges to the Erle for onsets.
VerifyErle(estimator.Erle(), estimator.ErleTimeDomain(), kMinErle, kMinErle);
@ -125,7 +126,7 @@ TEST(ErleEstimator, VerifyNoErleUpdateDuringLowActivity) {
X2.fill(1000.f * 1000.f);
Y2.fill(10 * E2[0]);
for (size_t k = 0; k < 200; ++k) {
estimator.Update(X2, Y2, E2);
estimator.Update(X2, Y2, E2, true);
}
VerifyErle(estimator.Erle(), estimator.ErleTimeDomain(), kMinErle, kMinErle);
}