Reset InterArrival if arrival time clock makes a jump.

Also adds a copy of the BWE test suite to the new DelayBasedBwe class.

BUG=webrtc:6079

Review-Url: https://codereview.webrtc.org/2126793002
Cr-Commit-Position: refs/heads/master@{#13428}
This commit is contained in:
stefan 2016-07-11 01:44:02 -07:00 committed by Commit bot
parent 154d0de5cd
commit 5e12d36ba7
22 changed files with 1063 additions and 215 deletions

View File

@ -145,6 +145,9 @@ if (rtc_include_tests) {
"bitrate_controller/bitrate_controller_unittest.cc",
"bitrate_controller/send_side_bandwidth_estimation_unittest.cc",
"congestion_controller/congestion_controller_unittest.cc",
"congestion_controller/delay_based_bwe_unittest.cc",
"congestion_controller/delay_based_bwe_unittest_helper.cc",
"congestion_controller/delay_based_bwe_unittest_helper.h",
"media_file/media_file_unittest.cc",
"module_common_types_unittest.cc",
"pacing/bitrate_prober_unittest.cc",

View File

@ -131,7 +131,7 @@ class WrappingBitrateEstimator : public RemoteBitrateEstimator {
// Instantiate RBE for Time Offset or Absolute Send Time extensions.
void PickEstimator() EXCLUSIVE_LOCKS_REQUIRED(crit_sect_.get()) {
if (using_absolute_send_time_) {
rbe_.reset(new RemoteBitrateEstimatorAbsSendTime(observer_));
rbe_.reset(new RemoteBitrateEstimatorAbsSendTime(observer_, clock_));
} else {
rbe_.reset(new RemoteBitrateEstimatorSingleStream(observer_, clock_));
}
@ -205,7 +205,7 @@ CongestionController::~CongestionController() {}
void CongestionController::Init() {
transport_feedback_adapter_.SetBitrateEstimator(
new DelayBasedBwe(&transport_feedback_adapter_));
new DelayBasedBwe(&transport_feedback_adapter_, clock_));
transport_feedback_adapter_.GetBitrateEstimator()->SetMinBitrate(
min_bitrate_bps_);
}
@ -240,8 +240,8 @@ void CongestionController::ResetBweAndBitrates(int bitrate_bps,
if (remote_bitrate_estimator_)
remote_bitrate_estimator_->SetMinBitrate(min_bitrate_bps);
RemoteBitrateEstimator* rbe =
new RemoteBitrateEstimatorAbsSendTime(&transport_feedback_adapter_);
RemoteBitrateEstimator* rbe = new RemoteBitrateEstimatorAbsSendTime(
&transport_feedback_adapter_, clock_);
transport_feedback_adapter_.SetBitrateEstimator(rbe);
rbe->SetMinBitrate(min_bitrate_bps);
// TODO(holmer): Trigger a new probe once mid-call probing is implemented.

View File

@ -68,8 +68,9 @@ void DelayBasedBwe::AddCluster(std::list<Cluster>* clusters, Cluster* cluster) {
clusters->push_back(*cluster);
}
DelayBasedBwe::DelayBasedBwe(RemoteBitrateObserver* observer)
: observer_(observer),
DelayBasedBwe::DelayBasedBwe(RemoteBitrateObserver* observer, Clock* clock)
: clock_(clock),
observer_(observer),
inter_arrival_(),
estimator_(),
detector_(OverUseDetectorOptions()),
@ -203,35 +204,6 @@ void DelayBasedBwe::IncomingPacketFeedbackVector(
}
}
void DelayBasedBwe::IncomingPacket(int64_t arrival_time_ms,
size_t payload_size,
const RTPHeader& header) {
RTC_DCHECK(network_thread_.CalledOnValidThread());
if (!header.extension.hasAbsoluteSendTime) {
// NOTE! The BitrateEstimatorTest relies on this EXACT log line.
LOG(LS_WARNING) << "RemoteBitrateEstimatorAbsSendTime: Incoming packet "
"is missing absolute send time extension!";
return;
}
IncomingPacketInfo(arrival_time_ms, header.extension.absoluteSendTime,
payload_size, header.ssrc, PacketInfo::kNotAProbe);
}
void DelayBasedBwe::IncomingPacket(int64_t arrival_time_ms,
size_t payload_size,
const RTPHeader& header,
int probe_cluster_id) {
RTC_DCHECK(network_thread_.CalledOnValidThread());
if (!header.extension.hasAbsoluteSendTime) {
// NOTE! The BitrateEstimatorTest relies on this EXACT log line.
LOG(LS_WARNING) << "RemoteBitrateEstimatorAbsSendTime: Incoming packet "
"is missing absolute send time extension!";
return;
}
IncomingPacketInfo(arrival_time_ms, header.extension.absoluteSendTime,
payload_size, header.ssrc, probe_cluster_id);
}
void DelayBasedBwe::IncomingPacketInfo(int64_t arrival_time_ms,
uint32_t send_time_24bits,
size_t payload_size,
@ -243,13 +215,13 @@ void DelayBasedBwe::IncomingPacketInfo(int64_t arrival_time_ms,
uint32_t timestamp = send_time_24bits << kAbsSendTimeInterArrivalUpshift;
int64_t send_time_ms = static_cast<int64_t>(timestamp) * kTimestampToMs;
int64_t now_ms = arrival_time_ms;
int64_t now_ms = clock_->TimeInMilliseconds();
// TODO(holmer): SSRCs are only needed for REMB, should be broken out from
// here.
incoming_bitrate_.Update(payload_size, now_ms);
incoming_bitrate_.Update(payload_size, arrival_time_ms);
if (first_packet_time_ms_ == -1)
first_packet_time_ms_ = arrival_time_ms;
first_packet_time_ms_ = now_ms;
uint32_t ts_delta = 0;
int64_t t_delta = 0;
@ -294,8 +266,9 @@ void DelayBasedBwe::IncomingPacketInfo(int64_t arrival_time_ms,
if (ProcessClusters(now_ms) == ProbeResult::kBitrateUpdated)
update_estimate = true;
}
if (inter_arrival_->ComputeDeltas(timestamp, arrival_time_ms, payload_size,
&ts_delta, &t_delta, &size_delta)) {
if (inter_arrival_->ComputeDeltas(timestamp, arrival_time_ms, now_ms,
payload_size, &ts_delta, &t_delta,
&size_delta)) {
double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift);
estimator_->Update(t_delta, ts_delta_ms, size_delta, detector_.State());
detector_.Detect(estimator_->offset(), ts_delta_ms,
@ -309,7 +282,8 @@ void DelayBasedBwe::IncomingPacketInfo(int64_t arrival_time_ms,
now_ms - last_update_ms_ > remote_rate_.GetFeedbackInterval()) {
update_estimate = true;
} else if (detector_.State() == kBwOverusing) {
rtc::Optional<uint32_t> incoming_rate = incoming_bitrate_.Rate(now_ms);
rtc::Optional<uint32_t> incoming_rate =
incoming_bitrate_.Rate(arrival_time_ms);
if (incoming_rate &&
remote_rate_.TimeToReduceFurther(now_ms, *incoming_rate)) {
update_estimate = true;
@ -322,7 +296,7 @@ void DelayBasedBwe::IncomingPacketInfo(int64_t arrival_time_ms,
// We also have to update the estimate immediately if we are overusing
// and the target bitrate is too high compared to what we are receiving.
const RateControlInput input(detector_.State(),
incoming_bitrate_.Rate(now_ms),
incoming_bitrate_.Rate(arrival_time_ms),
estimator_->var_noise());
remote_rate_.Update(&input, now_ms);
target_bitrate_bps = remote_rate_.UpdateBandwidthEstimate(now_ms);

View File

@ -32,7 +32,7 @@ namespace webrtc {
class DelayBasedBwe : public RemoteBitrateEstimator {
public:
explicit DelayBasedBwe(RemoteBitrateObserver* observer);
DelayBasedBwe(RemoteBitrateObserver* observer, Clock* clock);
virtual ~DelayBasedBwe() {}
void IncomingPacketFeedbackVector(
@ -40,12 +40,9 @@ class DelayBasedBwe : public RemoteBitrateEstimator {
void IncomingPacket(int64_t arrival_time_ms,
size_t payload_size,
const RTPHeader& header) override;
void IncomingPacket(int64_t arrival_time_ms,
size_t payload_size,
const RTPHeader& header,
int probe_cluster_id);
const RTPHeader& header) override {
RTC_NOTREACHED();
}
// This class relies on Process() being called periodically (at least once
// every other second) for streams to be timed out properly. Therefore it
@ -126,13 +123,12 @@ class DelayBasedBwe : public RemoteBitrateEstimator {
void TimeoutStreams(int64_t now_ms) EXCLUSIVE_LOCKS_REQUIRED(&crit_);
rtc::ThreadChecker network_thread_;
Clock* const clock_;
RemoteBitrateObserver* const observer_;
std::unique_ptr<InterArrival> inter_arrival_;
std::unique_ptr<OveruseEstimator> estimator_;
OveruseDetector detector_;
RateStatistics incoming_bitrate_;
std::vector<int> recent_propagation_delta_ms_;
std::vector<int64_t> recent_update_time_ms_;
std::list<Probe> probes_;
size_t total_probes_received_;
int64_t first_packet_time_ms_;

View File

@ -8,116 +8,75 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/modules/pacing/paced_sender.h"
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
#include "webrtc/modules/congestion_controller/delay_based_bwe_unittest_helper.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
class TestDelayBasedBwe : public ::testing::Test, public RemoteBitrateObserver {
public:
static constexpr int kArrivalTimeClockOffsetMs = 60000;
static constexpr int kNumProbes = 5;
namespace {
TestDelayBasedBwe()
: bwe_(this), clock_(0), bitrate_updated_(false), latest_bitrate_(0) {}
constexpr int kNumProbes = 5;
} // namespace
uint32_t AbsSendTime(int64_t t, int64_t denom) {
return (((t << 18) + (denom >> 1)) / denom) & 0x00fffffful;
}
void IncomingPacket(uint32_t ssrc,
size_t payload_size,
int64_t arrival_time,
uint32_t rtp_timestamp,
uint32_t absolute_send_time,
int probe_cluster_id) {
RTPHeader header;
memset(&header, 0, sizeof(header));
header.ssrc = ssrc;
header.timestamp = rtp_timestamp;
header.extension.hasAbsoluteSendTime = true;
header.extension.absoluteSendTime = absolute_send_time;
bwe_.IncomingPacket(arrival_time + kArrivalTimeClockOffsetMs, payload_size,
header, probe_cluster_id);
}
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
uint32_t bitrate) {
bitrate_updated_ = true;
latest_bitrate_ = bitrate;
}
bool bitrate_updated() {
bool res = bitrate_updated_;
bitrate_updated_ = false;
return res;
}
int latest_bitrate() { return latest_bitrate_; }
DelayBasedBwe bwe_;
SimulatedClock clock_;
private:
bool bitrate_updated_;
int latest_bitrate_;
};
TEST_F(TestDelayBasedBwe, ProbeDetection) {
TEST_F(DelayBasedBweTest, ProbeDetection) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), 0);
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 0);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_TRUE(bitrate_observer_->updated());
// Second burst sent at 8 * 1000 / 5 = 1600 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), 1);
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 1);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_GT(latest_bitrate(), 1500000);
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_GT(bitrate_observer_->latest_bitrate(), 1500000u);
}
TEST_F(TestDelayBasedBwe, ProbeDetectionNonPacedPackets) {
TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
// not being paced which could mess things up.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), 0);
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 0);
// Non-paced packet, arriving 5 ms after.
clock_.AdvanceTimeMilliseconds(5);
IncomingPacket(0, PacedSender::kMinProbePacketSize + 1, now_ms, 90 * now_ms,
AbsSendTime(now_ms, 1000), PacketInfo::kNotAProbe);
IncomingFeedback(now_ms, now_ms, seq_num++,
PacedSender::kMinProbePacketSize + 1,
PacketInfo::kNotAProbe);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_GT(latest_bitrate(), 800000);
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u);
}
// Packets will require 5 ms to be transmitted to the receiver, causing packets
// of the second probe to be dispersed.
TEST_F(TestDelayBasedBwe, ProbeDetectionTooHighBitrate) {
TEST_F(DelayBasedBweTest, ProbeDetectionTooHighBitrate) {
int64_t now_ms = clock_.TimeInMilliseconds();
int64_t send_time_ms = 0;
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
send_time_ms += 10;
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 0);
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 0);
}
// Second burst sent at 8 * 1000 / 5 = 1600 kbps, arriving at 8 * 1000 / 8 =
@ -126,16 +85,16 @@ TEST_F(TestDelayBasedBwe, ProbeDetectionTooHighBitrate) {
clock_.AdvanceTimeMilliseconds(8);
now_ms = clock_.TimeInMilliseconds();
send_time_ms += 5;
IncomingPacket(0, 1000, now_ms, send_time_ms,
AbsSendTime(send_time_ms, 1000), 1);
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_NEAR(latest_bitrate(), 800000, 10000);
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000u);
}
TEST_F(TestDelayBasedBwe, ProbeDetectionSlightlyFasterArrival) {
TEST_F(DelayBasedBweTest, ProbeDetectionSlightlyFasterArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
@ -143,16 +102,16 @@ TEST_F(TestDelayBasedBwe, ProbeDetectionSlightlyFasterArrival) {
clock_.AdvanceTimeMilliseconds(5);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 23);
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 23);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_GT(latest_bitrate(), 800000);
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u);
}
TEST_F(TestDelayBasedBwe, ProbeDetectionFasterArrival) {
TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
@ -160,15 +119,15 @@ TEST_F(TestDelayBasedBwe, ProbeDetectionFasterArrival) {
clock_.AdvanceTimeMilliseconds(1);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 0);
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 0);
}
EXPECT_FALSE(bitrate_updated());
EXPECT_FALSE(bitrate_observer_->updated());
}
TEST_F(TestDelayBasedBwe, ProbeDetectionSlowerArrival) {
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 5 = 1600 kbps.
// Arriving at 8 * 1000 / 7 = 1142 kbps.
int64_t send_time_ms = 0;
@ -176,16 +135,16 @@ TEST_F(TestDelayBasedBwe, ProbeDetectionSlowerArrival) {
clock_.AdvanceTimeMilliseconds(7);
send_time_ms += 5;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 1);
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_NEAR(latest_bitrate(), 1140000, 10000);
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 1140000u, 10000u);
}
TEST_F(TestDelayBasedBwe, ProbeDetectionSlowerArrivalHighBitrate) {
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// Burst sent at 8 * 1000 / 1 = 8000 kbps.
// Arriving at 8 * 1000 / 2 = 4000 kbps.
int64_t send_time_ms = 0;
@ -193,39 +152,106 @@ TEST_F(TestDelayBasedBwe, ProbeDetectionSlowerArrivalHighBitrate) {
clock_.AdvanceTimeMilliseconds(2);
send_time_ms += 1;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000), 1);
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1);
}
EXPECT_TRUE(bitrate_updated());
EXPECT_NEAR(latest_bitrate(), 4000000u, 10000);
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 4000000u, 10000u);
}
TEST_F(TestDelayBasedBwe, ProbingIgnoresSmallPackets) {
TEST_F(DelayBasedBweTest, ProbingIgnoresSmallPackets) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// Probing with 200 bytes every 10 ms, should be ignored by the probe
// detection.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, PacedSender::kMinProbePacketSize, now_ms, 90 * now_ms,
AbsSendTime(now_ms, 1000), 1);
IncomingFeedback(now_ms, now_ms, seq_num++,
PacedSender::kMinProbePacketSize, 1);
}
EXPECT_FALSE(bitrate_updated());
EXPECT_FALSE(bitrate_observer_->updated());
// Followed by a probe with 1000 bytes packets, should be detected as a
// probe.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000), 1);
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 1);
}
// Wait long enough so that we can call Process again.
clock_.AdvanceTimeMilliseconds(1000);
EXPECT_TRUE(bitrate_updated());
EXPECT_NEAR(latest_bitrate(), 800000u, 10000);
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000u);
}
TEST_F(DelayBasedBweTest, InitialBehavior) {
InitialBehaviorTestHelper(674840);
}
TEST_F(DelayBasedBweTest, RateIncreaseReordering) {
RateIncreaseReorderingTestHelper(674840);
}
TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) {
RateIncreaseRtpTimestampsTestHelper(1240);
}
TEST_F(DelayBasedBweTest, CapacityDropOneStream) {
CapacityDropTestHelper(1, false, 633, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) {
CapacityDropTestHelper(1, false, 200, 30000);
}
TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) {
CapacityDropTestHelper(1, false, 733, -30000);
}
TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 633, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropTwoStreamsWrap) {
CapacityDropTestHelper(2, true, 567, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropThreeStreamsWrap) {
CapacityDropTestHelper(3, true, 633, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropThirteenStreamsWrap) {
CapacityDropTestHelper(13, true, 733, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropNineteenStreamsWrap) {
CapacityDropTestHelper(19, true, 667, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropThirtyStreamsWrap) {
CapacityDropTestHelper(30, true, 667, 0);
}
TEST_F(DelayBasedBweTest, TestTimestampGrouping) {
TestTimestampGroupingTestHelper();
}
TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after 35 seconds. This
// will make abs send time wrap, so if streams aren't timed out properly
// the next 30 seconds of packets will be out of order.
TestWrappingHelper(35);
}
TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after some multiple of
// 64 seconds later. This will cause a zero difference in abs send times due
// to the wrap, but a big difference in arrival time, if streams aren't
// properly timed out.
TestWrappingHelper(10 * 64);
}
} // namespace webrtc

View File

@ -0,0 +1,500 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/congestion_controller/delay_based_bwe_unittest_helper.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "webrtc/base/checks.h"
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
namespace webrtc {
const size_t kMtu = 1200;
const uint32_t kAcceptedBitrateErrorBps = 50000;
// Number of packets needed before we have a valid estimate.
const int kNumInitialPackets = 2;
namespace test {
void TestBitrateObserver::OnReceiveBitrateChanged(
const std::vector<uint32_t>& ssrcs,
uint32_t bitrate) {
latest_bitrate_ = bitrate;
updated_ = true;
}
RtpStream::RtpStream(int fps, int bitrate_bps)
: fps_(fps),
bitrate_bps_(bitrate_bps),
next_rtp_time_(0),
sequence_number_(0) {
RTC_CHECK_GT(fps_, 0);
}
// Generates a new frame for this stream. If called too soon after the
// previous frame, no frame will be generated. The frame is split into
// packets.
int64_t RtpStream::GenerateFrame(int64_t time_now_us,
std::vector<PacketInfo>* packets) {
if (time_now_us < next_rtp_time_) {
return next_rtp_time_;
}
RTC_CHECK(packets != NULL);
size_t bits_per_frame = (bitrate_bps_ + fps_ / 2) / fps_;
size_t n_packets =
std::max<size_t>((bits_per_frame + 4 * kMtu) / (8 * kMtu), 1u);
size_t payload_size = (bits_per_frame + 4 * n_packets) / (8 * n_packets);
for (size_t i = 0; i < n_packets; ++i) {
PacketInfo packet(-1, sequence_number_++);
packet.send_time_ms = (time_now_us + kSendSideOffsetUs) / 1000;
packet.payload_size = payload_size;
packet.probe_cluster_id = PacketInfo::kNotAProbe;
packets->push_back(packet);
}
next_rtp_time_ = time_now_us + (1000000 + fps_ / 2) / fps_;
return next_rtp_time_;
}
// The send-side time when the next frame can be generated.
int64_t RtpStream::next_rtp_time() const {
return next_rtp_time_;
}
void RtpStream::set_bitrate_bps(int bitrate_bps) {
ASSERT_GE(bitrate_bps, 0);
bitrate_bps_ = bitrate_bps;
}
int RtpStream::bitrate_bps() const {
return bitrate_bps_;
}
bool RtpStream::Compare(const std::unique_ptr<RtpStream>& lhs,
const std::unique_ptr<RtpStream>& rhs) {
return lhs->next_rtp_time_ < rhs->next_rtp_time_;
}
StreamGenerator::StreamGenerator(int capacity, int64_t time_now)
: capacity_(capacity), prev_arrival_time_us_(time_now) {}
// Add a new stream.
void StreamGenerator::AddStream(RtpStream* stream) {
streams_.push_back(std::unique_ptr<RtpStream>(stream));
}
// Set the link capacity.
void StreamGenerator::set_capacity_bps(int capacity_bps) {
ASSERT_GT(capacity_bps, 0);
capacity_ = capacity_bps;
}
// Divides |bitrate_bps| among all streams. The allocated bitrate per stream
// is decided by the current allocation ratios.
void StreamGenerator::SetBitrateBps(int bitrate_bps) {
ASSERT_GE(streams_.size(), 0u);
int total_bitrate_before = 0;
for (const auto& stream : streams_) {
total_bitrate_before += stream->bitrate_bps();
}
int64_t bitrate_before = 0;
int total_bitrate_after = 0;
for (const auto& stream : streams_) {
bitrate_before += stream->bitrate_bps();
int64_t bitrate_after =
(bitrate_before * bitrate_bps + total_bitrate_before / 2) /
total_bitrate_before;
stream->set_bitrate_bps(bitrate_after - total_bitrate_after);
total_bitrate_after += stream->bitrate_bps();
}
ASSERT_EQ(bitrate_before, total_bitrate_before);
EXPECT_EQ(total_bitrate_after, bitrate_bps);
}
// TODO(holmer): Break out the channel simulation part from this class to make
// it possible to simulate different types of channels.
int64_t StreamGenerator::GenerateFrame(std::vector<PacketInfo>* packets,
int64_t time_now_us) {
RTC_CHECK(packets != NULL);
RTC_CHECK(packets->empty());
RTC_CHECK_GT(capacity_, 0);
auto it =
std::min_element(streams_.begin(), streams_.end(), RtpStream::Compare);
(*it)->GenerateFrame(time_now_us, packets);
int i = 0;
for (PacketInfo& packet : *packets) {
int capacity_bpus = capacity_ / 1000;
int64_t required_network_time_us =
(8 * 1000 * packet.payload_size + capacity_bpus / 2) / capacity_bpus;
prev_arrival_time_us_ =
std::max(time_now_us + required_network_time_us,
prev_arrival_time_us_ + required_network_time_us);
packet.arrival_time_ms = prev_arrival_time_us_ / 1000;
++i;
}
it = std::min_element(streams_.begin(), streams_.end(), RtpStream::Compare);
return std::max((*it)->next_rtp_time(), time_now_us);
}
} // namespace test
DelayBasedBweTest::DelayBasedBweTest()
: clock_(100000000),
bitrate_observer_(new test::TestBitrateObserver),
bitrate_estimator_(new DelayBasedBwe(bitrate_observer_.get(), &clock_)),
stream_generator_(
new test::StreamGenerator(1e6, // Capacity.
clock_.TimeInMicroseconds())),
arrival_time_offset_ms_(0) {}
DelayBasedBweTest::~DelayBasedBweTest() {}
void DelayBasedBweTest::AddDefaultStream() {
stream_generator_->AddStream(new test::RtpStream(30, 3e5));
}
const uint32_t DelayBasedBweTest::kDefaultSsrc = 0;
void DelayBasedBweTest::IncomingFeedback(int64_t arrival_time_ms,
int64_t send_time_ms,
uint16_t sequence_number,
size_t payload_size) {
IncomingFeedback(arrival_time_ms, send_time_ms, sequence_number, payload_size,
0);
}
void DelayBasedBweTest::IncomingFeedback(int64_t arrival_time_ms,
int64_t send_time_ms,
uint16_t sequence_number,
size_t payload_size,
int probe_cluster_id) {
RTC_CHECK_GE(arrival_time_ms + arrival_time_offset_ms_, 0);
PacketInfo packet(arrival_time_ms + arrival_time_offset_ms_, send_time_ms,
sequence_number, payload_size, probe_cluster_id);
std::vector<PacketInfo> packets;
packets.push_back(packet);
bitrate_estimator_->IncomingPacketFeedbackVector(packets);
}
// Generates a frame of packets belonging to a stream at a given bitrate and
// with a given ssrc. The stream is pushed through a very simple simulated
// network, and is then given to the receive-side bandwidth estimator.
// Returns true if an over-use was seen, false otherwise.
// The StreamGenerator::updated() should be used to check for any changes in
// target bitrate after the call to this function.
bool DelayBasedBweTest::GenerateAndProcessFrame(uint32_t ssrc,
uint32_t bitrate_bps) {
stream_generator_->SetBitrateBps(bitrate_bps);
std::vector<PacketInfo> packets;
int64_t next_time_us =
stream_generator_->GenerateFrame(&packets, clock_.TimeInMicroseconds());
if (packets.empty())
return false;
bool overuse = false;
bitrate_observer_->Reset();
clock_.AdvanceTimeMicroseconds(1000 * packets.back().arrival_time_ms -
clock_.TimeInMicroseconds());
for (auto& packet : packets) {
RTC_CHECK_GE(packet.arrival_time_ms + arrival_time_offset_ms_, 0);
packet.arrival_time_ms += arrival_time_offset_ms_;
}
bitrate_estimator_->IncomingPacketFeedbackVector(packets);
if (bitrate_observer_->updated()) {
if (bitrate_observer_->latest_bitrate() < bitrate_bps)
overuse = true;
}
clock_.AdvanceTimeMicroseconds(next_time_us - clock_.TimeInMicroseconds());
return overuse;
}
// Run the bandwidth estimator with a stream of |number_of_frames| frames, or
// until it reaches |target_bitrate|.
// Can for instance be used to run the estimator for some time to get it
// into a steady state.
uint32_t DelayBasedBweTest::SteadyStateRun(uint32_t ssrc,
int max_number_of_frames,
uint32_t start_bitrate,
uint32_t min_bitrate,
uint32_t max_bitrate,
uint32_t target_bitrate) {
uint32_t bitrate_bps = start_bitrate;
bool bitrate_update_seen = false;
// Produce |number_of_frames| frames and give them to the estimator.
for (int i = 0; i < max_number_of_frames; ++i) {
bool overuse = GenerateAndProcessFrame(ssrc, bitrate_bps);
if (overuse) {
EXPECT_LT(bitrate_observer_->latest_bitrate(), max_bitrate);
EXPECT_GT(bitrate_observer_->latest_bitrate(), min_bitrate);
bitrate_bps = bitrate_observer_->latest_bitrate();
bitrate_update_seen = true;
} else if (bitrate_observer_->updated()) {
bitrate_bps = bitrate_observer_->latest_bitrate();
bitrate_observer_->Reset();
}
if (bitrate_update_seen && bitrate_bps > target_bitrate) {
break;
}
}
EXPECT_TRUE(bitrate_update_seen);
return bitrate_bps;
}
void DelayBasedBweTest::InitialBehaviorTestHelper(
uint32_t expected_converge_bitrate) {
const int kFramerate = 50; // 50 fps to avoid rounding errors.
const int kFrameIntervalMs = 1000 / kFramerate;
uint32_t bitrate_bps = 0;
int64_t send_time_ms = 0;
uint16_t sequence_number = 0;
std::vector<uint32_t> ssrcs;
EXPECT_FALSE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
EXPECT_EQ(0u, ssrcs.size());
clock_.AdvanceTimeMilliseconds(1000);
bitrate_estimator_->Process();
EXPECT_FALSE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
EXPECT_FALSE(bitrate_observer_->updated());
bitrate_observer_->Reset();
clock_.AdvanceTimeMilliseconds(1000);
// Inserting packets for 5 seconds to get a valid estimate.
for (int i = 0; i < 5 * kFramerate + 1 + kNumInitialPackets; ++i) {
if (i == kNumInitialPackets) {
bitrate_estimator_->Process();
EXPECT_FALSE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
EXPECT_EQ(0u, ssrcs.size());
EXPECT_FALSE(bitrate_observer_->updated());
bitrate_observer_->Reset();
}
IncomingFeedback(clock_.TimeInMilliseconds(), send_time_ms,
sequence_number++, kMtu);
clock_.AdvanceTimeMilliseconds(1000 / kFramerate);
send_time_ms += kFrameIntervalMs;
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
ASSERT_EQ(1u, ssrcs.size());
EXPECT_EQ(kDefaultSsrc, ssrcs.front());
EXPECT_NEAR(expected_converge_bitrate, bitrate_bps, kAcceptedBitrateErrorBps);
EXPECT_TRUE(bitrate_observer_->updated());
bitrate_observer_->Reset();
EXPECT_EQ(bitrate_observer_->latest_bitrate(), bitrate_bps);
bitrate_estimator_->RemoveStream(kDefaultSsrc);
EXPECT_TRUE(bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_bps));
ASSERT_EQ(0u, ssrcs.size());
EXPECT_EQ(0u, bitrate_bps);
}
void DelayBasedBweTest::RateIncreaseReorderingTestHelper(
uint32_t expected_bitrate_bps) {
const int kFramerate = 50; // 50 fps to avoid rounding errors.
const int kFrameIntervalMs = 1000 / kFramerate;
int64_t send_time_ms = 0;
uint16_t sequence_number = 0;
// Inserting packets for five seconds to get a valid estimate.
for (int i = 0; i < 5 * kFramerate + 1 + kNumInitialPackets; ++i) {
// TODO(sprang): Remove this hack once the single stream estimator is gone,
// as it doesn't do anything in Process().
if (i == kNumInitialPackets) {
// Process after we have enough frames to get a valid input rate estimate.
bitrate_estimator_->Process();
EXPECT_FALSE(bitrate_observer_->updated()); // No valid estimate.
}
IncomingFeedback(clock_.TimeInMilliseconds(), send_time_ms,
sequence_number++, kMtu);
clock_.AdvanceTimeMilliseconds(kFrameIntervalMs);
send_time_ms += kFrameIntervalMs;
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(expected_bitrate_bps, bitrate_observer_->latest_bitrate(),
kAcceptedBitrateErrorBps);
for (int i = 0; i < 10; ++i) {
clock_.AdvanceTimeMilliseconds(2 * kFrameIntervalMs);
send_time_ms += 2 * kFrameIntervalMs;
IncomingFeedback(clock_.TimeInMilliseconds(), send_time_ms,
sequence_number + 2, 1000);
IncomingFeedback(clock_.TimeInMilliseconds(),
send_time_ms - kFrameIntervalMs, sequence_number + 1,
1000);
sequence_number += 2;
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(expected_bitrate_bps, bitrate_observer_->latest_bitrate(),
kAcceptedBitrateErrorBps);
}
// Make sure we initially increase the bitrate as expected.
void DelayBasedBweTest::RateIncreaseRtpTimestampsTestHelper(
int expected_iterations) {
// This threshold corresponds approximately to increasing linearly with
// bitrate(i) = 1.04 * bitrate(i-1) + 1000
// until bitrate(i) > 500000, with bitrate(1) ~= 30000.
uint32_t bitrate_bps = 30000;
int iterations = 0;
AddDefaultStream();
// Feed the estimator with a stream of packets and verify that it reaches
// 500 kbps at the expected time.
while (bitrate_bps < 5e5) {
bool overuse = GenerateAndProcessFrame(kDefaultSsrc, bitrate_bps);
if (overuse) {
EXPECT_GT(bitrate_observer_->latest_bitrate(), bitrate_bps);
bitrate_bps = bitrate_observer_->latest_bitrate();
bitrate_observer_->Reset();
} else if (bitrate_observer_->updated()) {
bitrate_bps = bitrate_observer_->latest_bitrate();
bitrate_observer_->Reset();
}
++iterations;
ASSERT_LE(iterations, expected_iterations);
}
ASSERT_EQ(expected_iterations, iterations);
}
void DelayBasedBweTest::CapacityDropTestHelper(
int number_of_streams,
bool wrap_time_stamp,
uint32_t expected_bitrate_drop_delta,
int64_t receiver_clock_offset_change_ms) {
const int kFramerate = 30;
const int kStartBitrate = 900e3;
const int kMinExpectedBitrate = 800e3;
const int kMaxExpectedBitrate = 1100e3;
const uint32_t kInitialCapacityBps = 1000e3;
const uint32_t kReducedCapacityBps = 500e3;
int steady_state_time = 0;
if (number_of_streams <= 1) {
steady_state_time = 10;
AddDefaultStream();
} else {
steady_state_time = 10 * number_of_streams;
int bitrate_sum = 0;
int kBitrateDenom = number_of_streams * (number_of_streams - 1);
for (int i = 0; i < number_of_streams; i++) {
// First stream gets half available bitrate, while the rest share the
// remaining half i.e.: 1/2 = Sum[n/(N*(N-1))] for n=1..N-1 (rounded up)
int bitrate = kStartBitrate / 2;
if (i > 0) {
bitrate = (kStartBitrate * i + kBitrateDenom / 2) / kBitrateDenom;
}
stream_generator_->AddStream(new test::RtpStream(kFramerate, bitrate));
bitrate_sum += bitrate;
}
ASSERT_EQ(bitrate_sum, kStartBitrate);
}
// Run in steady state to make the estimator converge.
stream_generator_->set_capacity_bps(kInitialCapacityBps);
uint32_t bitrate_bps = SteadyStateRun(
kDefaultSsrc, steady_state_time * kFramerate, kStartBitrate,
kMinExpectedBitrate, kMaxExpectedBitrate, kInitialCapacityBps);
EXPECT_NEAR(kInitialCapacityBps, bitrate_bps, 130000u);
bitrate_observer_->Reset();
// Add an offset to make sure the BWE can handle it.
arrival_time_offset_ms_ += receiver_clock_offset_change_ms;
// Reduce the capacity and verify the decrease time.
stream_generator_->set_capacity_bps(kReducedCapacityBps);
int64_t overuse_start_time = clock_.TimeInMilliseconds();
int64_t bitrate_drop_time = -1;
for (int i = 0; i < 100 * number_of_streams; ++i) {
GenerateAndProcessFrame(kDefaultSsrc, bitrate_bps);
if (bitrate_drop_time == -1 &&
bitrate_observer_->latest_bitrate() <= kReducedCapacityBps) {
bitrate_drop_time = clock_.TimeInMilliseconds();
}
if (bitrate_observer_->updated())
bitrate_bps = bitrate_observer_->latest_bitrate();
}
EXPECT_NEAR(expected_bitrate_drop_delta,
bitrate_drop_time - overuse_start_time, 33);
}
void DelayBasedBweTest::TestTimestampGroupingTestHelper() {
const int kFramerate = 50; // 50 fps to avoid rounding errors.
const int kFrameIntervalMs = 1000 / kFramerate;
int64_t send_time_ms = 0;
uint16_t sequence_number = 0;
// Initial set of frames to increase the bitrate. 6 seconds to have enough
// time for the first estimate to be generated and for Process() to be called.
for (int i = 0; i <= 6 * kFramerate; ++i) {
IncomingFeedback(clock_.TimeInMilliseconds(), send_time_ms,
sequence_number++, 1000);
bitrate_estimator_->Process();
clock_.AdvanceTimeMilliseconds(kFrameIntervalMs);
send_time_ms += kFrameIntervalMs;
}
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_GE(bitrate_observer_->latest_bitrate(), 400000u);
// Insert batches of frames which were sent very close in time. Also simulate
// capacity over-use to see that we back off correctly.
const int kTimestampGroupLength = 15;
for (int i = 0; i < 100; ++i) {
for (int j = 0; j < kTimestampGroupLength; ++j) {
// Insert |kTimestampGroupLength| frames with just 1 timestamp ticks in
// between. Should be treated as part of the same group by the estimator.
IncomingFeedback(clock_.TimeInMilliseconds(), send_time_ms,
sequence_number++, 100);
clock_.AdvanceTimeMilliseconds(kFrameIntervalMs / kTimestampGroupLength);
send_time_ms += 1;
}
// Increase time until next batch to simulate over-use.
clock_.AdvanceTimeMilliseconds(10);
send_time_ms += kFrameIntervalMs - kTimestampGroupLength;
bitrate_estimator_->Process();
}
EXPECT_TRUE(bitrate_observer_->updated());
// Should have reduced the estimate.
EXPECT_LT(bitrate_observer_->latest_bitrate(), 400000u);
}
void DelayBasedBweTest::TestWrappingHelper(int silence_time_s) {
const int kFramerate = 100;
const int kFrameIntervalMs = 1000 / kFramerate;
int64_t send_time_ms = 0;
uint16_t sequence_number = 0;
for (size_t i = 0; i < 3000; ++i) {
IncomingFeedback(clock_.TimeInMilliseconds(), send_time_ms,
sequence_number++, 1000);
clock_.AdvanceTimeMilliseconds(kFrameIntervalMs);
send_time_ms += kFrameIntervalMs;
bitrate_estimator_->Process();
}
uint32_t bitrate_before = 0;
std::vector<uint32_t> ssrcs;
bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_before);
clock_.AdvanceTimeMilliseconds(silence_time_s * 1000);
send_time_ms += silence_time_s * 1000;
bitrate_estimator_->Process();
for (size_t i = 0; i < 21; ++i) {
IncomingFeedback(clock_.TimeInMilliseconds(), send_time_ms,
sequence_number++, 1000);
clock_.AdvanceTimeMilliseconds(2 * kFrameIntervalMs);
send_time_ms += kFrameIntervalMs;
bitrate_estimator_->Process();
}
uint32_t bitrate_after = 0;
bitrate_estimator_->LatestEstimate(&ssrcs, &bitrate_after);
EXPECT_LT(bitrate_after, bitrate_before);
}
} // namespace webrtc

View File

@ -0,0 +1,172 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_CONGESTION_CONTROLLER_DELAY_BASED_BWE_UNITTEST_HELPER_H_
#define WEBRTC_MODULES_CONGESTION_CONTROLLER_DELAY_BASED_BWE_UNITTEST_HELPER_H_
#include <list>
#include <map>
#include <memory>
#include <utility>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace test {
class TestBitrateObserver : public RemoteBitrateObserver {
public:
TestBitrateObserver() : updated_(false), latest_bitrate_(0) {}
virtual ~TestBitrateObserver() {}
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
uint32_t bitrate) override;
void Reset() { updated_ = false; }
bool updated() const { return updated_; }
uint32_t latest_bitrate() const { return latest_bitrate_; }
private:
bool updated_;
uint32_t latest_bitrate_;
};
class RtpStream {
public:
enum { kSendSideOffsetUs = 1000000 };
RtpStream(int fps, int bitrate_bps);
// Generates a new frame for this stream. If called too soon after the
// previous frame, no frame will be generated. The frame is split into
// packets.
int64_t GenerateFrame(int64_t time_now_us, std::vector<PacketInfo>* packets);
// The send-side time when the next frame can be generated.
int64_t next_rtp_time() const;
void set_bitrate_bps(int bitrate_bps);
int bitrate_bps() const;
static bool Compare(const std::unique_ptr<RtpStream>& lhs,
const std::unique_ptr<RtpStream>& rhs);
private:
int fps_;
int bitrate_bps_;
int64_t next_rtp_time_;
uint16_t sequence_number_;
RTC_DISALLOW_COPY_AND_ASSIGN(RtpStream);
};
class StreamGenerator {
public:
StreamGenerator(int capacity, int64_t time_now);
// Add a new stream.
void AddStream(RtpStream* stream);
// Set the link capacity.
void set_capacity_bps(int capacity_bps);
// Divides |bitrate_bps| among all streams. The allocated bitrate per stream
// is decided by the initial allocation ratios.
void SetBitrateBps(int bitrate_bps);
// Set the RTP timestamp offset for the stream identified by |ssrc|.
void set_rtp_timestamp_offset(uint32_t ssrc, uint32_t offset);
// TODO(holmer): Break out the channel simulation part from this class to make
// it possible to simulate different types of channels.
int64_t GenerateFrame(std::vector<PacketInfo>* packets, int64_t time_now_us);
private:
// Capacity of the simulated channel in bits per second.
int capacity_;
// The time when the last packet arrived.
int64_t prev_arrival_time_us_;
// All streams being transmitted on this simulated channel.
std::vector<std::unique_ptr<RtpStream>> streams_;
RTC_DISALLOW_COPY_AND_ASSIGN(StreamGenerator);
};
} // namespace test
class DelayBasedBweTest : public ::testing::Test {
public:
DelayBasedBweTest();
virtual ~DelayBasedBweTest();
protected:
void AddDefaultStream();
// Helpers to insert a single packet into the delay-based BWE.
void IncomingFeedback(int64_t arrival_time_ms,
int64_t send_time_ms,
uint16_t sequence_number,
size_t payload_size);
void IncomingFeedback(int64_t arrival_time_ms,
int64_t send_time_ms,
uint16_t sequence_number,
size_t payload_size,
int probe_cluster_id);
// Generates a frame of packets belonging to a stream at a given bitrate and
// with a given ssrc. The stream is pushed through a very simple simulated
// network, and is then given to the receive-side bandwidth estimator.
// Returns true if an over-use was seen, false otherwise.
// The StreamGenerator::updated() should be used to check for any changes in
// target bitrate after the call to this function.
bool GenerateAndProcessFrame(uint32_t ssrc, uint32_t bitrate_bps);
// Run the bandwidth estimator with a stream of |number_of_frames| frames, or
// until it reaches |target_bitrate|.
// Can for instance be used to run the estimator for some time to get it
// into a steady state.
uint32_t SteadyStateRun(uint32_t ssrc,
int number_of_frames,
uint32_t start_bitrate,
uint32_t min_bitrate,
uint32_t max_bitrate,
uint32_t target_bitrate);
void TestTimestampGroupingTestHelper();
void TestWrappingHelper(int silence_time_s);
void InitialBehaviorTestHelper(uint32_t expected_converge_bitrate);
void RateIncreaseReorderingTestHelper(uint32_t expected_bitrate);
void RateIncreaseRtpTimestampsTestHelper(int expected_iterations);
void CapacityDropTestHelper(int number_of_streams,
bool wrap_time_stamp,
uint32_t expected_bitrate_drop_delta,
int64_t receiver_clock_offset_change_ms);
static const uint32_t kDefaultSsrc;
SimulatedClock clock_; // Time at the receiver.
std::unique_ptr<test::TestBitrateObserver> bitrate_observer_;
std::unique_ptr<RemoteBitrateEstimator> bitrate_estimator_;
std::unique_ptr<test::StreamGenerator> stream_generator_;
int64_t arrival_time_offset_ms_;
RTC_DISALLOW_COPY_AND_ASSIGN(DelayBasedBweTest);
};
} // namespace webrtc
#endif // WEBRTC_MODULES_CONGESTION_CONTROLLER_DELAY_BASED_BWE_UNITTEST_HELPER_H_

View File

@ -274,6 +274,8 @@
'bitrate_controller/send_side_bandwidth_estimation_unittest.cc',
'congestion_controller/congestion_controller_unittest.cc',
'congestion_controller/delay_based_bwe_unittest.cc',
'congestion_controller/delay_based_bwe_unittest_helper.cc',
'congestion_controller/delay_based_bwe_unittest_helper.h',
'media_file/media_file_unittest.cc',
'module_common_types_unittest.cc',
'pacing/bitrate_prober_unittest.cc',

View File

@ -27,10 +27,12 @@ InterArrival::InterArrival(uint32_t timestamp_group_length_ticks,
current_timestamp_group_(),
prev_timestamp_group_(),
timestamp_to_ms_coeff_(timestamp_to_ms_coeff),
burst_grouping_(enable_burst_grouping) {}
burst_grouping_(enable_burst_grouping),
num_consecutive_reordered_packets_(0) {}
bool InterArrival::ComputeDeltas(uint32_t timestamp,
int64_t arrival_time_ms,
int64_t system_time_ms,
size_t packet_size,
uint32_t* timestamp_delta,
int64_t* arrival_time_delta_ms,
@ -53,13 +55,32 @@ bool InterArrival::ComputeDeltas(uint32_t timestamp,
prev_timestamp_group_.timestamp;
*arrival_time_delta_ms = current_timestamp_group_.complete_time_ms -
prev_timestamp_group_.complete_time_ms;
// Check system time differences to see if we have an unproportional jump
// in arrival time. In that case reset the inter-arrival computations.
int64_t system_time_delta_ms =
current_timestamp_group_.last_system_time_ms -
prev_timestamp_group_.last_system_time_ms;
if (*arrival_time_delta_ms - system_time_delta_ms >=
kArrivalTimeOffsetThresholdMs) {
LOG(LS_WARNING) << "The arrival time clock offset has changed (diff = "
<< *arrival_time_delta_ms - system_time_delta_ms
<< " ms), resetting.";
Reset();
return false;
}
if (*arrival_time_delta_ms < 0) {
// The group of packets has been reordered since receiving its local
// arrival timestamp.
LOG(LS_WARNING) << "Packets are being reordered on the path from the "
"socket to the bandwidth estimator. Ignoring this "
"packet for bandwidth estimation.";
++num_consecutive_reordered_packets_;
if (num_consecutive_reordered_packets_ >= kReorderedResetThreshold) {
LOG(LS_WARNING) << "Packets are being reordered on the path from the "
"socket to the bandwidth estimator. Ignoring this "
"packet for bandwidth estimation, resetting.";
Reset();
}
return false;
} else {
num_consecutive_reordered_packets_ = 0;
}
assert(*arrival_time_delta_ms >= 0);
*packet_size_delta = static_cast<int>(current_timestamp_group_.size) -
@ -78,6 +99,7 @@ bool InterArrival::ComputeDeltas(uint32_t timestamp,
// Accumulate the frame size.
current_timestamp_group_.size += packet_size;
current_timestamp_group_.complete_time_ms = arrival_time_ms;
current_timestamp_group_.last_system_time_ms = system_time_ms;
return calculated_deltas;
}
@ -126,4 +148,10 @@ bool InterArrival::BelongsToBurst(int64_t arrival_time_ms,
return propagation_delta_ms < 0 &&
arrival_time_delta_ms <= kBurstDeltaThresholdMs;
}
void InterArrival::Reset() {
num_consecutive_reordered_packets_ = 0;
current_timestamp_group_ = TimestampGroup();
prev_timestamp_group_ = TimestampGroup();
}
} // namespace webrtc

View File

@ -23,6 +23,11 @@ namespace webrtc {
// a client defined rate.
class InterArrival {
public:
// After this many packet groups received out of order InterArrival will
// reset, assuming that clocks have made a jump.
static constexpr int kReorderedResetThreshold = 3;
static constexpr int64_t kArrivalTimeOffsetThresholdMs = 3000;
// A timestamp group is defined as all packets with a timestamp which are at
// most timestamp_group_length_ticks older than the first timestamp in that
// group.
@ -40,6 +45,7 @@ class InterArrival {
// |packet_size_delta| (output) is the computed size delta.
bool ComputeDeltas(uint32_t timestamp,
int64_t arrival_time_ms,
int64_t system_time_ms,
size_t packet_size,
uint32_t* timestamp_delta,
int64_t* arrival_time_delta_ms,
@ -61,6 +67,7 @@ class InterArrival {
uint32_t first_timestamp;
uint32_t timestamp;
int64_t complete_time_ms;
int64_t last_system_time_ms;
};
// Returns true if the packet with timestamp |timestamp| arrived in order.
@ -72,11 +79,14 @@ class InterArrival {
bool BelongsToBurst(int64_t arrival_time_ms, uint32_t timestamp) const;
void Reset();
const uint32_t kTimestampGroupLengthTicks;
TimestampGroup current_timestamp_group_;
TimestampGroup prev_timestamp_group_;
double timestamp_to_ms_coeff_;
bool burst_grouping_;
int num_consecutive_reordered_packets_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(InterArrival);
};

View File

@ -34,6 +34,8 @@ const double kAstToMs = 1000.0 / static_cast<double>(1 << kInterArrivalShift);
class InterArrivalTest : public ::testing::Test {
protected:
virtual void SetUp() {
inter_arrival_.reset(
new InterArrival(kTimestampGroupLengthUs / 1000, 1.0, true));
inter_arrival_rtp_.reset(new InterArrival(
MakeRtpTimestamp(kTimestampGroupLengthUs),
kRtpTimestampToMs,
@ -149,6 +151,8 @@ class InterArrivalTest : public ::testing::Test {
timestamp_near);
}
std::unique_ptr<InterArrival> inter_arrival_;
private:
static uint32_t MakeRtpTimestamp(int64_t us) {
return static_cast<uint32_t>(static_cast<uint64_t>(us * 90 + 500) / 1000);
@ -166,12 +170,9 @@ class InterArrivalTest : public ::testing::Test {
uint32_t dummy_timestamp = 101;
int64_t dummy_arrival_time_ms = 303;
int dummy_packet_size = 909;
bool computed = inter_arrival->ComputeDeltas(timestamp,
arrival_time_ms,
packet_size,
&dummy_timestamp,
&dummy_arrival_time_ms,
&dummy_packet_size);
bool computed = inter_arrival->ComputeDeltas(
timestamp, arrival_time_ms, arrival_time_ms, packet_size,
&dummy_timestamp, &dummy_arrival_time_ms, &dummy_packet_size);
EXPECT_EQ(computed, false);
EXPECT_EQ(101ul, dummy_timestamp);
EXPECT_EQ(303, dummy_arrival_time_ms);
@ -188,12 +189,9 @@ class InterArrivalTest : public ::testing::Test {
uint32_t delta_timestamp = 101;
int64_t delta_arrival_time_ms = 303;
int delta_packet_size = 909;
bool computed = inter_arrival->ComputeDeltas(timestamp,
arrival_time_ms,
packet_size,
&delta_timestamp,
&delta_arrival_time_ms,
&delta_packet_size);
bool computed = inter_arrival->ComputeDeltas(
timestamp, arrival_time_ms, arrival_time_ms, packet_size,
&delta_timestamp, &delta_arrival_time_ms, &delta_packet_size);
EXPECT_EQ(true, computed);
EXPECT_NEAR(expected_timestamp_delta, delta_timestamp, timestamp_near);
EXPECT_EQ(expected_arrival_time_delta_ms, delta_arrival_time_ms);
@ -419,5 +417,121 @@ TEST_F(InterArrivalTest, RtpTimestampWrapOutOfOrderWithinGroup) {
TEST_F(InterArrivalTest, AbsSendTimeWrapOutOfOrderWithinGroup) {
WrapTestHelper(kStartAbsSendTimeWrapUs, 1, true);
}
TEST_F(InterArrivalTest, PositiveArrivalTimeJump) {
const size_t kPacketSize = 1000;
uint32_t send_time_ms = 10000;
int64_t arrival_time_ms = 20000;
int64_t system_time_ms = 30000;
uint32_t send_delta;
int64_t arrival_delta;
int size_delta;
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
const int kTimeDeltaMs = 30;
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs;
system_time_ms += kTimeDeltaMs;
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs + InterArrival::kArrivalTimeOffsetThresholdMs;
system_time_ms += kTimeDeltaMs;
EXPECT_TRUE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
EXPECT_EQ(kTimeDeltaMs, static_cast<int>(send_delta));
EXPECT_EQ(kTimeDeltaMs, arrival_delta);
EXPECT_EQ(size_delta, 0);
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs;
system_time_ms += kTimeDeltaMs;
// The previous arrival time jump should now be detected and cause a reset.
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
// The two next packets will not give a valid delta since we're in the initial
// state.
for (int i = 0; i < 2; ++i) {
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs;
system_time_ms += kTimeDeltaMs;
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
}
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs;
system_time_ms += kTimeDeltaMs;
EXPECT_TRUE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
EXPECT_EQ(kTimeDeltaMs, static_cast<int>(send_delta));
EXPECT_EQ(kTimeDeltaMs, arrival_delta);
EXPECT_EQ(size_delta, 0);
}
TEST_F(InterArrivalTest, NegativeArrivalTimeJump) {
const size_t kPacketSize = 1000;
uint32_t send_time_ms = 10000;
int64_t arrival_time_ms = 20000;
int64_t system_time_ms = 30000;
uint32_t send_delta;
int64_t arrival_delta;
int size_delta;
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
const int kTimeDeltaMs = 30;
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs;
system_time_ms += kTimeDeltaMs;
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs;
system_time_ms += kTimeDeltaMs;
EXPECT_TRUE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
EXPECT_EQ(kTimeDeltaMs, static_cast<int>(send_delta));
EXPECT_EQ(kTimeDeltaMs, arrival_delta);
EXPECT_EQ(size_delta, 0);
// Three out of order will fail, after that we will be reset and two more will
// fail before we get our first valid delta after the reset.
arrival_time_ms -= 1000;
for (int i = 0; i < InterArrival::kReorderedResetThreshold + 3; ++i) {
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs;
system_time_ms += kTimeDeltaMs;
// The previous arrival time jump should now be detected and cause a reset.
EXPECT_FALSE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
}
send_time_ms += kTimeDeltaMs;
arrival_time_ms += kTimeDeltaMs;
system_time_ms += kTimeDeltaMs;
EXPECT_TRUE(inter_arrival_->ComputeDeltas(
send_time_ms, arrival_time_ms, system_time_ms, kPacketSize, &send_delta,
&arrival_delta, &size_delta));
EXPECT_EQ(kTimeDeltaMs, static_cast<int>(send_delta));
EXPECT_EQ(kTimeDeltaMs, arrival_delta);
EXPECT_EQ(size_delta, 0);
}
} // namespace testing
} // namespace webrtc

View File

@ -95,12 +95,9 @@ class OveruseDetectorTest : public ::testing::Test {
uint32_t timestamp_delta;
int64_t time_delta;
int size_delta;
if (inter_arrival_->ComputeDeltas(rtp_timestamp,
receive_time_ms,
packet_size,
&timestamp_delta,
&time_delta,
&size_delta)) {
if (inter_arrival_->ComputeDeltas(
rtp_timestamp, receive_time_ms, receive_time_ms, packet_size,
&timestamp_delta, &time_delta, &size_delta)) {
double timestamp_delta_ms = timestamp_delta / 90.0;
overuse_estimator_->Update(time_delta, timestamp_delta_ms, size_delta,
overuse_detector_->State());

View File

@ -79,8 +79,10 @@ bool RemoteBitrateEstimatorAbsSendTime::IsWithinClusterBounds(
}
RemoteBitrateEstimatorAbsSendTime::RemoteBitrateEstimatorAbsSendTime(
RemoteBitrateObserver* observer)
: observer_(observer),
RemoteBitrateObserver* observer,
Clock* clock)
: clock_(clock),
observer_(observer),
inter_arrival_(),
estimator_(),
detector_(OverUseDetectorOptions()),
@ -234,18 +236,19 @@ void RemoteBitrateEstimatorAbsSendTime::IncomingPacketInfo(
uint32_t send_time_24bits,
size_t payload_size,
uint32_t ssrc) {
assert(send_time_24bits < (1ul << 24));
RTC_CHECK(send_time_24bits < (1ul << 24));
// Shift up send time to use the full 32 bits that inter_arrival works with,
// so wrapping works properly.
uint32_t timestamp = send_time_24bits << kAbsSendTimeInterArrivalUpshift;
int64_t send_time_ms = static_cast<int64_t>(timestamp) * kTimestampToMs;
int64_t now_ms = arrival_time_ms;
int64_t now_ms = clock_->TimeInMilliseconds();
// TODO(holmer): SSRCs are only needed for REMB, should be broken out from
// here.
// Check if incoming bitrate estimate is valid, and if it needs to be reset.
rtc::Optional<uint32_t> incoming_bitrate = incoming_bitrate_.Rate(now_ms);
rtc::Optional<uint32_t> incoming_bitrate =
incoming_bitrate_.Rate(arrival_time_ms);
if (incoming_bitrate) {
incoming_bitrate_initialized_ = true;
} else if (incoming_bitrate_initialized_) {
@ -255,10 +258,10 @@ void RemoteBitrateEstimatorAbsSendTime::IncomingPacketInfo(
incoming_bitrate_.Reset();
incoming_bitrate_initialized_ = false;
}
incoming_bitrate_.Update(payload_size, now_ms);
incoming_bitrate_.Update(payload_size, arrival_time_ms);
if (first_packet_time_ms_ == -1)
first_packet_time_ms_ = arrival_time_ms;
first_packet_time_ms_ = now_ms;
uint32_t ts_delta = 0;
int64_t t_delta = 0;
@ -300,8 +303,9 @@ void RemoteBitrateEstimatorAbsSendTime::IncomingPacketInfo(
if (ProcessClusters(now_ms) == ProbeResult::kBitrateUpdated)
update_estimate = true;
}
if (inter_arrival_->ComputeDeltas(timestamp, arrival_time_ms, payload_size,
&ts_delta, &t_delta, &size_delta)) {
if (inter_arrival_->ComputeDeltas(timestamp, arrival_time_ms, now_ms,
payload_size, &ts_delta, &t_delta,
&size_delta)) {
double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift);
estimator_->Update(t_delta, ts_delta_ms, size_delta, detector_.State());
detector_.Detect(estimator_->offset(), ts_delta_ms,
@ -315,7 +319,8 @@ void RemoteBitrateEstimatorAbsSendTime::IncomingPacketInfo(
now_ms - last_update_ms_ > remote_rate_.GetFeedbackInterval()) {
update_estimate = true;
} else if (detector_.State() == kBwOverusing) {
rtc::Optional<uint32_t> incoming_rate = incoming_bitrate_.Rate(now_ms);
rtc::Optional<uint32_t> incoming_rate =
incoming_bitrate_.Rate(arrival_time_ms);
if (incoming_rate &&
remote_rate_.TimeToReduceFurther(now_ms, *incoming_rate)) {
update_estimate = true;
@ -328,7 +333,7 @@ void RemoteBitrateEstimatorAbsSendTime::IncomingPacketInfo(
// We also have to update the estimate immediately if we are overusing
// and the target bitrate is too high compared to what we are receiving.
const RateControlInput input(detector_.State(),
incoming_bitrate_.Rate(now_ms),
incoming_bitrate_.Rate(arrival_time_ms),
estimator_->var_noise());
remote_rate_.Update(&input, now_ms);
target_bitrate_bps = remote_rate_.UpdateBandwidthEstimate(now_ms);

View File

@ -68,7 +68,8 @@ struct Cluster {
class RemoteBitrateEstimatorAbsSendTime : public RemoteBitrateEstimator {
public:
explicit RemoteBitrateEstimatorAbsSendTime(RemoteBitrateObserver* observer);
RemoteBitrateEstimatorAbsSendTime(RemoteBitrateObserver* observer,
Clock* clock);
virtual ~RemoteBitrateEstimatorAbsSendTime() {}
void IncomingPacketFeedbackVector(
@ -117,6 +118,7 @@ class RemoteBitrateEstimatorAbsSendTime : public RemoteBitrateEstimator {
void TimeoutStreams(int64_t now_ms) EXCLUSIVE_LOCKS_REQUIRED(&crit_);
rtc::ThreadChecker network_thread_;
Clock* const clock_;
RemoteBitrateObserver* const observer_;
std::unique_ptr<InterArrival> inter_arrival_;
std::unique_ptr<OveruseEstimator> estimator_;

View File

@ -20,7 +20,7 @@ class RemoteBitrateEstimatorAbsSendTimeTest :
RemoteBitrateEstimatorAbsSendTimeTest() {}
virtual void SetUp() {
bitrate_estimator_.reset(new RemoteBitrateEstimatorAbsSendTime(
bitrate_observer_.get()));
bitrate_observer_.get(), &clock_));
}
protected:
RTC_DISALLOW_COPY_AND_ASSIGN(RemoteBitrateEstimatorAbsSendTimeTest);
@ -39,31 +39,39 @@ TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, RateIncreaseRtpTimestamps) {
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropOneStream) {
CapacityDropTestHelper(1, false, 667);
CapacityDropTestHelper(1, false, 633, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropPosOffsetChange) {
CapacityDropTestHelper(1, false, 267, 30000);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropNegOffsetChange) {
CapacityDropTestHelper(1, false, 267, -30000);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 667);
CapacityDropTestHelper(1, true, 633, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropTwoStreamsWrap) {
CapacityDropTestHelper(2, true, 633);
CapacityDropTestHelper(2, true, 633, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThreeStreamsWrap) {
CapacityDropTestHelper(3, true, 633);
CapacityDropTestHelper(3, true, 633, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThirteenStreamsWrap) {
CapacityDropTestHelper(13, true, 667);
CapacityDropTestHelper(13, true, 667, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropNineteenStreamsWrap) {
CapacityDropTestHelper(19, true, 667);
CapacityDropTestHelper(19, true, 667, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThirtyStreamsWrap) {
CapacityDropTestHelper(30, true, 667);
CapacityDropTestHelper(30, true, 667, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestTimestampGrouping) {

View File

@ -109,9 +109,9 @@ void RemoteBitrateEstimatorSingleStream::IncomingPacket(
uint32_t timestamp_delta = 0;
int64_t time_delta = 0;
int size_delta = 0;
if (estimator->inter_arrival.ComputeDeltas(rtp_timestamp, arrival_time_ms,
payload_size, &timestamp_delta,
&time_delta, &size_delta)) {
if (estimator->inter_arrival.ComputeDeltas(
rtp_timestamp, arrival_time_ms, now_ms, payload_size,
&timestamp_delta, &time_delta, &size_delta)) {
double timestamp_delta_ms = timestamp_delta * kTimestampToMs;
estimator->estimator.Update(time_delta, timestamp_delta_ms, size_delta,
estimator->detector.State());

View File

@ -39,31 +39,31 @@ TEST_F(RemoteBitrateEstimatorSingleTest, RateIncreaseRtpTimestamps) {
}
TEST_F(RemoteBitrateEstimatorSingleTest, CapacityDropOneStream) {
CapacityDropTestHelper(1, false, 633);
CapacityDropTestHelper(1, false, 633, 0);
}
TEST_F(RemoteBitrateEstimatorSingleTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 633);
CapacityDropTestHelper(1, true, 633, 0);
}
TEST_F(RemoteBitrateEstimatorSingleTest, CapacityDropTwoStreamsWrap) {
CapacityDropTestHelper(2, true, 767);
CapacityDropTestHelper(2, true, 767, 0);
}
TEST_F(RemoteBitrateEstimatorSingleTest, CapacityDropThreeStreamsWrap) {
CapacityDropTestHelper(3, true, 567);
CapacityDropTestHelper(3, true, 567, 0);
}
TEST_F(RemoteBitrateEstimatorSingleTest, CapacityDropThirteenStreamsWrap) {
CapacityDropTestHelper(13, true, 567);
CapacityDropTestHelper(13, true, 567, 0);
}
TEST_F(RemoteBitrateEstimatorSingleTest, CapacityDropNineteenStreamsWrap) {
CapacityDropTestHelper(19, true, 700);
CapacityDropTestHelper(19, true, 700, 0);
}
TEST_F(RemoteBitrateEstimatorSingleTest, CapacityDropThirtyStreamsWrap) {
CapacityDropTestHelper(30, true, 733);
CapacityDropTestHelper(30, true, 733, 0);
}
TEST_F(RemoteBitrateEstimatorSingleTest, TestTimestampGrouping) {

View File

@ -13,6 +13,8 @@
#include <limits>
#include <utility>
#include "webrtc/base/checks.h"
namespace webrtc {
const size_t kMtu = 1200;
@ -77,7 +79,7 @@ int64_t RtpStream::GenerateFrame(int64_t time_now_us, PacketList* packets) {
}
// The send-side time when the next frame can be generated.
double RtpStream::next_rtp_time() const {
int64_t RtpStream::next_rtp_time() const {
return next_rtp_time_;
}
@ -116,7 +118,7 @@ bool RtpStream::Compare(const std::pair<uint32_t, RtpStream*>& left,
return left.second->next_rtp_time_ < right.second->next_rtp_time_;
}
StreamGenerator::StreamGenerator(int capacity, double time_now)
StreamGenerator::StreamGenerator(int capacity, int64_t time_now)
: capacity_(capacity),
prev_arrival_time_us_(time_now) {}
@ -187,16 +189,17 @@ int64_t StreamGenerator::GenerateFrame(RtpStream::PacketList* packets,
++i;
}
it = std::min_element(streams_.begin(), streams_.end(), RtpStream::Compare);
return (*it).second->next_rtp_time();
return std::max((*it).second->next_rtp_time(), time_now_us);
}
} // namespace testing
RemoteBitrateEstimatorTest::RemoteBitrateEstimatorTest()
: clock_(0),
: clock_(100000000),
bitrate_observer_(new testing::TestBitrateObserver),
stream_generator_(new testing::StreamGenerator(
1e6, // Capacity.
clock_.TimeInMicroseconds())) {}
clock_.TimeInMicroseconds())),
arrival_time_offset_ms_(0) {}
RemoteBitrateEstimatorTest::~RemoteBitrateEstimatorTest() {}
@ -231,7 +234,8 @@ void RemoteBitrateEstimatorTest::IncomingPacket(uint32_t ssrc,
header.timestamp = rtp_timestamp;
header.extension.hasAbsoluteSendTime = true;
header.extension.absoluteSendTime = absolute_send_time;
bitrate_estimator_->IncomingPacket(arrival_time + kArrivalTimeClockOffsetMs,
RTC_CHECK_GE(arrival_time + arrival_time_offset_ms_, 0);
bitrate_estimator_->IncomingPacket(arrival_time + arrival_time_offset_ms_,
payload_size, header);
}
@ -243,6 +247,7 @@ void RemoteBitrateEstimatorTest::IncomingPacket(uint32_t ssrc,
// target bitrate after the call to this function.
bool RemoteBitrateEstimatorTest::GenerateAndProcessFrame(uint32_t ssrc,
uint32_t bitrate_bps) {
RTC_DCHECK_GT(bitrate_bps, 0u);
stream_generator_->SetBitrateBps(bitrate_bps);
testing::RtpStream::PacketList packets;
int64_t next_time_us = stream_generator_->GenerateFrame(
@ -429,7 +434,8 @@ void RemoteBitrateEstimatorTest::RateIncreaseRtpTimestampsTestHelper(
void RemoteBitrateEstimatorTest::CapacityDropTestHelper(
int number_of_streams,
bool wrap_time_stamp,
uint32_t expected_bitrate_drop_delta) {
uint32_t expected_bitrate_drop_delta,
int64_t receiver_clock_offset_change_ms) {
const int kFramerate = 30;
const int kStartBitrate = 900e3;
const int kMinExpectedBitrate = 800e3;
@ -477,6 +483,9 @@ void RemoteBitrateEstimatorTest::CapacityDropTestHelper(
EXPECT_NEAR(kInitialCapacityBps, bitrate_bps, 130000u);
bitrate_observer_->Reset();
// Add an offset to make sure the BWE can handle it.
arrival_time_offset_ms_ += receiver_clock_offset_change_ms;
// Reduce the capacity and verify the decrease time.
stream_generator_->set_capacity_bps(kReducedCapacityBps);
int64_t overuse_start_time = clock_.TimeInMilliseconds();
@ -487,7 +496,8 @@ void RemoteBitrateEstimatorTest::CapacityDropTestHelper(
bitrate_observer_->latest_bitrate() <= kReducedCapacityBps) {
bitrate_drop_time = clock_.TimeInMilliseconds();
}
bitrate_bps = bitrate_observer_->latest_bitrate();
if (bitrate_observer_->updated())
bitrate_bps = bitrate_observer_->latest_bitrate();
}
EXPECT_NEAR(expected_bitrate_drop_delta,

View File

@ -79,7 +79,7 @@ class RtpStream {
int64_t GenerateFrame(int64_t time_now_us, PacketList* packets);
// The send-side time when the next frame can be generated.
double next_rtp_time() const;
int64_t next_rtp_time() const;
// Generates an RTCP packet.
RtcpPacket* Rtcp(int64_t time_now_us);
@ -112,7 +112,7 @@ class StreamGenerator {
public:
typedef std::list<RtpStream::RtcpPacket*> RtcpList;
StreamGenerator(int capacity, double time_now);
StreamGenerator(int capacity, int64_t time_now);
~StreamGenerator();
@ -203,15 +203,16 @@ class RemoteBitrateEstimatorTest : public ::testing::Test {
void RateIncreaseRtpTimestampsTestHelper(int expected_iterations);
void CapacityDropTestHelper(int number_of_streams,
bool wrap_time_stamp,
uint32_t expected_bitrate_drop_delta);
uint32_t expected_bitrate_drop_delta,
int64_t receiver_clock_offset_change_ms);
static const uint32_t kDefaultSsrc;
static const int kArrivalTimeClockOffsetMs = 60000;
SimulatedClock clock_; // Time at the receiver.
std::unique_ptr<testing::TestBitrateObserver> bitrate_observer_;
std::unique_ptr<RemoteBitrateEstimator> bitrate_estimator_;
std::unique_ptr<testing::StreamGenerator> stream_generator_;
int64_t arrival_time_offset_ms_;
RTC_DISALLOW_COPY_AND_ASSIGN(RemoteBitrateEstimatorTest);
};

View File

@ -71,7 +71,7 @@ RembReceiver::RembReceiver(int flow_id, bool plot)
recv_stats_(ReceiveStatistics::Create(&clock_)),
latest_estimate_bps_(-1),
last_feedback_ms_(-1),
estimator_(new RemoteBitrateEstimatorAbsSendTime(this)) {
estimator_(new RemoteBitrateEstimatorAbsSendTime(this, &clock_)) {
std::stringstream ss;
ss << "Estimate_" << flow_id_ << "#1";
estimate_log_prefix_ = ss.str();

View File

@ -25,7 +25,7 @@ FullBweSender::FullBweSender(int kbps, BitrateObserver* observer, Clock* clock)
BitrateController::CreateBitrateController(clock,
observer,
&event_log_)),
rbe_(new RemoteBitrateEstimatorAbsSendTime(this)),
rbe_(new RemoteBitrateEstimatorAbsSendTime(this, clock)),
feedback_observer_(bitrate_controller_->CreateRtcpBandwidthObserver()),
clock_(clock),
send_time_history_(clock_, 10000),

View File

@ -117,9 +117,9 @@ bool ParseArgsAndSetupEstimator(int argc,
switch (extension) {
case webrtc::kRtpExtensionAbsoluteSendTime: {
*estimator =
new webrtc::RemoteBitrateEstimatorAbsSendTime(observer);
*estimator_used = "AbsoluteSendTimeRemoteBitrateEstimator";
break;
new webrtc::RemoteBitrateEstimatorAbsSendTime(observer, clock);
*estimator_used = "AbsoluteSendTimeRemoteBitrateEstimator";
break;
}
case webrtc::kRtpExtensionTransmissionTimeOffset: {
*estimator =