Add audio view classes

From the new header file:
* MonoView<>: A single channel contiguous buffer of samples.
* InterleavedView<>: Channel samples are interleaved (side-by-side) in
  the buffer. A single channel InterleavedView<> is the same thing as a
  MonoView<>
* DeinterleavedView<>: Each channel's samples are contiguous within the
  buffer. Channels can be enumerated and accessing the
  individual channel data is done via MonoView<>.

There are also a few utility functions that offer a unified way to check
the properties regardless of what view type is in use.

Bug: chromium:335805780
Change-Id: I28196f8f4ded4fadc72ee32b62af304c62f4fc47
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/349300
Reviewed-by: Per Åhgren <peah@webrtc.org>
Commit-Queue: Tomas Gunnarsson <tommi@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#42377}
This commit is contained in:
Tommi 2024-05-24 16:43:55 +02:00 committed by WebRTC LUCI CQ
parent 0596503938
commit 5d3e6805f2
21 changed files with 577 additions and 146 deletions

View File

@ -29,6 +29,7 @@ rtc_library("audio_frame_api") {
sources = [ sources = [
"audio_frame.cc", "audio_frame.cc",
"audio_frame.h", "audio_frame.h",
"audio_view.h",
"channel_layout.cc", "channel_layout.cc",
"channel_layout.h", "channel_layout.h",
] ]

View File

@ -137,17 +137,17 @@ const int16_t* AudioFrame::data() const {
return muted_ ? zeroed_data().begin() : data_; return muted_ ? zeroed_data().begin() : data_;
} }
rtc::ArrayView<const int16_t> AudioFrame::data_view() const { InterleavedView<const int16_t> AudioFrame::data_view() const {
const auto samples = samples_per_channel_ * num_channels_;
// If you get a nullptr from `data_view()`, it's likely because the // If you get a nullptr from `data_view()`, it's likely because the
// samples_per_channel_ and/or num_channels_ haven't been properly set. // samples_per_channel_ and/or num_channels_ members haven't been properly
// Since `data_view()` returns an rtc::ArrayView<>, we inherit the behavior // set. Since `data_view()` returns an InterleavedView<> (which internally
// in ArrayView when the view size is 0 that ArrayView<>::data() will always // uses rtc::ArrayView<>), we inherit the behavior in InterleavedView when the
// return nullptr. So, even when an AudioFrame is muted and we want to // view size is 0 that ArrayView<>::data() returns nullptr. So, even when an
// return `zeroed_data()`, if samples_per_channel_ or num_channels_ is 0, // AudioFrame is muted and we want to return `zeroed_data()`, if
// the view will point to nullptr. // samples_per_channel_ or num_channels_ is 0, the view will point to
return muted_ ? zeroed_data().subview(0, samples) // nullptr.
: rtc::ArrayView<const int16_t>(&data_[0], samples); return InterleavedView<const int16_t>(muted_ ? &zeroed_data()[0] : &data_[0],
samples_per_channel_, num_channels_);
} }
int16_t* AudioFrame::mutable_data() { int16_t* AudioFrame::mutable_data() {
@ -161,8 +161,8 @@ int16_t* AudioFrame::mutable_data() {
return data_; return data_;
} }
rtc::ArrayView<int16_t> AudioFrame::mutable_data(size_t samples_per_channel, InterleavedView<int16_t> AudioFrame::mutable_data(size_t samples_per_channel,
size_t num_channels) { size_t num_channels) {
const size_t total_samples = samples_per_channel * num_channels; const size_t total_samples = samples_per_channel * num_channels;
RTC_CHECK_LE(total_samples, kMaxDataSizeSamples); RTC_CHECK_LE(total_samples, kMaxDataSizeSamples);
RTC_CHECK_LE(num_channels, kMaxConcurrentChannels); RTC_CHECK_LE(num_channels, kMaxConcurrentChannels);
@ -183,7 +183,7 @@ rtc::ArrayView<int16_t> AudioFrame::mutable_data(size_t samples_per_channel,
} }
samples_per_channel_ = samples_per_channel; samples_per_channel_ = samples_per_channel;
num_channels_ = num_channels; num_channels_ = num_channels;
return rtc::ArrayView<int16_t>(&data_[0], total_samples); return InterleavedView<int16_t>(&data_[0], samples_per_channel, num_channels);
} }
void AudioFrame::Mute() { void AudioFrame::Mute() {

View File

@ -15,6 +15,7 @@
#include <stdint.h> #include <stdint.h>
#include "api/array_view.h" #include "api/array_view.h"
#include "api/audio/audio_view.h"
#include "api/audio/channel_layout.h" #include "api/audio/channel_layout.h"
#include "api/rtp_packet_infos.h" #include "api/rtp_packet_infos.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
@ -96,7 +97,7 @@ class AudioFrame {
// ResetWithoutMuting() to skip this wasteful zeroing. // ResetWithoutMuting() to skip this wasteful zeroing.
void ResetWithoutMuting(); void ResetWithoutMuting();
// TODO: b/335805780 - Accept ArrayView. // TODO: b/335805780 - Accept InterleavedView.
void UpdateFrame(uint32_t timestamp, void UpdateFrame(uint32_t timestamp,
const int16_t* data, const int16_t* data,
size_t samples_per_channel, size_t samples_per_channel,
@ -119,18 +120,16 @@ class AudioFrame {
int64_t ElapsedProfileTimeMs() const; int64_t ElapsedProfileTimeMs() const;
// data() returns a zeroed static buffer if the frame is muted. // data() returns a zeroed static buffer if the frame is muted.
// TODO: b/335805780 - Return ArrayView. // TODO: b/335805780 - Return InterleavedView.
const int16_t* data() const; const int16_t* data() const;
// Returns a read-only view of all the valid samples held by the AudioFrame. // Returns a read-only view of all the valid samples held by the AudioFrame.
// Note that for a muted AudioFrame, the size of the returned view will be // For a muted AudioFrame, the samples will all be 0.
// 0u and the contained data will be nullptr. InterleavedView<const int16_t> data_view() const;
rtc::ArrayView<const int16_t> data_view() const;
// mutable_frame() always returns a non-static buffer; the first call to // mutable_frame() always returns a non-static buffer; the first call to
// mutable_frame() zeros the buffer and marks the frame as unmuted. // mutable_frame() zeros the buffer and marks the frame as unmuted.
// TODO: b/335805780 - Return ArrayView based on the current values for // TODO: b/335805780 - Return an InterleavedView.
// samples per channel and num channels.
int16_t* mutable_data(); int16_t* mutable_data();
// Grants write access to the audio buffer. The size of the returned writable // Grants write access to the audio buffer. The size of the returned writable
@ -139,8 +138,8 @@ class AudioFrame {
// internal member variables; `samples_per_channel()` and `num_channels()` // internal member variables; `samples_per_channel()` and `num_channels()`
// respectively. // respectively.
// If the state is currently muted, the returned view will be zeroed out. // If the state is currently muted, the returned view will be zeroed out.
rtc::ArrayView<int16_t> mutable_data(size_t samples_per_channel, InterleavedView<int16_t> mutable_data(size_t samples_per_channel,
size_t num_channels); size_t num_channels);
// Prefer to mute frames using AudioFrameOperations::Mute. // Prefer to mute frames using AudioFrameOperations::Mute.
void Mute(); void Mute();

253
api/audio/audio_view.h Normal file
View File

@ -0,0 +1,253 @@
/*
* Copyright (c) 2024 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_AUDIO_AUDIO_VIEW_H_
#define API_AUDIO_AUDIO_VIEW_H_
#include "api/array_view.h"
#include "api/audio/channel_layout.h"
#include "rtc_base/checks.h"
namespace webrtc {
// This file contains 3 types of view classes:
//
// * MonoView<>: A single channel contiguous buffer of samples.
//
// * InterleavedView<>: Channel samples are interleaved (side-by-side) in
// the buffer. A single channel InterleavedView<> is the same thing as a
// MonoView<>
//
// * DeinterleavedView<>: Each channel's samples are contiguous within the
// buffer. Channels can be enumerated and accessing the individual channel
// data is done via MonoView<>.
//
// The views are comparable to and built on rtc::ArrayView<> but add
// audio specific properties for the dimensions of the buffer and the above
// specialized [de]interleaved support.
//
// There are also a few generic utility functions that can simplify
// generic code for supporting more than one type of view.
// MonoView<> represents a view over a single contiguous, audio buffer. This
// can be either an single channel (mono) interleaved buffer (e.g. AudioFrame),
// or a de-interleaved channel (e.g. from AudioBuffer).
template <typename T>
using MonoView = rtc::ArrayView<T>;
// InterleavedView<> is a view over an interleaved audio buffer (e.g. from
// AudioFrame).
template <typename T>
class InterleavedView {
public:
using value_type = T;
InterleavedView() = default;
template <typename U>
InterleavedView(U* data, size_t samples_per_channel, size_t num_channels)
: num_channels_(num_channels),
samples_per_channel_(samples_per_channel),
data_(data, num_channels * samples_per_channel) {
RTC_DCHECK_LE(num_channels_, kMaxConcurrentChannels);
RTC_DCHECK(num_channels_ == 0u || samples_per_channel_ != 0u);
}
// Construct an InterleavedView from a C-style array. Samples per channels
// is calculated based on the array size / num_channels.
template <typename U, size_t N>
InterleavedView(U (&array)[N], // NOLINT
size_t num_channels)
: InterleavedView(array, N / num_channels, num_channels) {
RTC_DCHECK_EQ(N % num_channels, 0u);
}
template <typename U>
InterleavedView(const InterleavedView<U>& other)
: num_channels_(other.num_channels()),
samples_per_channel_(other.samples_per_channel()),
data_(other.data()) {}
size_t num_channels() const { return num_channels_; }
size_t samples_per_channel() const { return samples_per_channel_; }
rtc::ArrayView<T> data() const { return data_; }
bool empty() const { return data_.empty(); }
size_t size() const { return data_.size(); }
MonoView<T> AsMono() const {
RTC_DCHECK_EQ(num_channels(), 1u);
RTC_DCHECK_EQ(data_.size(), samples_per_channel_);
return data_;
}
// A simple wrapper around memcpy that includes checks for properties.
// TODO(tommi): Consider if this can be utility function for both interleaved
// and deinterleaved views.
template <typename U>
void CopyFrom(const InterleavedView<U>& source) {
static_assert(sizeof(T) == sizeof(U), "");
RTC_DCHECK_EQ(num_channels(), source.num_channels());
RTC_DCHECK_EQ(samples_per_channel(), source.samples_per_channel());
RTC_DCHECK_GE(data_.size(), source.data().size());
const auto data = source.data();
memcpy(&data_[0], &data[0], data.size() * sizeof(U));
}
T& operator[](size_t idx) const { return data_[idx]; }
T* begin() const { return data_.begin(); }
T* end() const { return data_.end(); }
const T* cbegin() const { return data_.cbegin(); }
const T* cend() const { return data_.cend(); }
std::reverse_iterator<T*> rbegin() const { return data_.rbegin(); }
std::reverse_iterator<T*> rend() const { return data_.rend(); }
std::reverse_iterator<const T*> crbegin() const { return data_.crbegin(); }
std::reverse_iterator<const T*> crend() const { return data_.crend(); }
private:
// TODO(tommi): Consider having these both be stored as uint16_t to
// save a few bytes per view. Use `dchecked_cast` to support size_t during
// construction.
size_t num_channels_ = 0u;
size_t samples_per_channel_ = 0u;
rtc::ArrayView<T> data_;
};
template <typename T>
class DeinterleavedView {
public:
using value_type = T;
DeinterleavedView() = default;
template <typename U>
DeinterleavedView(U* data, size_t samples_per_channel, size_t num_channels)
: num_channels_(num_channels),
samples_per_channel_(samples_per_channel),
data_(data, num_channels * samples_per_channel_) {}
template <typename U>
DeinterleavedView(const DeinterleavedView<U>& other)
: num_channels_(other.num_channels()),
samples_per_channel_(other.samples_per_channel()),
data_(other.data()) {}
// Returns a deinterleaved channel where `idx` is the zero based index,
// in the range [0 .. num_channels()-1].
MonoView<T> operator[](size_t idx) const {
RTC_DCHECK_LT(idx, num_channels_);
return MonoView<T>(&data_[idx * samples_per_channel_],
samples_per_channel_);
}
size_t num_channels() const { return num_channels_; }
size_t samples_per_channel() const { return samples_per_channel_; }
rtc::ArrayView<T> data() const { return data_; }
bool empty() const { return data_.empty(); }
size_t size() const { return data_.size(); }
// Returns the first (and possibly only) channel.
MonoView<T> AsMono() const {
RTC_DCHECK_GE(num_channels(), 1u);
return (*this)[0];
}
private:
// TODO(tommi): Consider having these be stored as uint16_t to save a few
// bytes per view. Use `dchecked_cast` to support size_t during construction.
size_t num_channels_ = 0u;
size_t samples_per_channel_ = 0u;
rtc::ArrayView<T> data_;
};
template <typename T>
constexpr size_t NumChannels(const MonoView<T>& view) {
return 1u;
}
template <typename T>
size_t NumChannels(const InterleavedView<T>& view) {
return view.num_channels();
}
template <typename T>
size_t NumChannels(const DeinterleavedView<T>& view) {
return view.num_channels();
}
template <typename T>
constexpr bool IsMono(const MonoView<T>& view) {
return true;
}
template <typename T>
constexpr bool IsInterleavedView(const MonoView<T>& view) {
return true;
}
template <typename T>
constexpr bool IsInterleavedView(const InterleavedView<T>& view) {
return true;
}
template <typename T>
constexpr bool IsInterleavedView(const DeinterleavedView<const T>& view) {
return false;
}
template <typename T>
bool IsMono(const InterleavedView<T>& view) {
return NumChannels(view) == 1u;
}
template <typename T>
bool IsMono(const DeinterleavedView<T>& view) {
return NumChannels(view) == 1u;
}
template <typename T>
size_t SamplesPerChannel(const MonoView<T>& view) {
return view.size();
}
template <typename T>
size_t SamplesPerChannel(const InterleavedView<T>& view) {
return view.samples_per_channel();
}
template <typename T>
size_t SamplesPerChannel(const DeinterleavedView<T>& view) {
return view.samples_per_channel();
}
// A simple wrapper around memcpy that includes checks for properties.
// The parameter order is the same as for memcpy(), first destination then
// source.
template <typename D, typename S>
void CopySamples(D& destination, const S& source) {
static_assert(
sizeof(typename D::value_type) == sizeof(typename S::value_type), "");
// Here we'd really like to do
// static_assert(IsInterleavedView(destination) == IsInterleavedView(source),
// "");
// but the compiler doesn't like it inside this template function for
// some reason. The following check is an approximation but unfortunately
// means that copying between a MonoView and single channel interleaved or
// deinterleaved views wouldn't work.
// static_assert(sizeof(destination) == sizeof(source),
// "Incompatible view types");
RTC_DCHECK_EQ(NumChannels(destination), NumChannels(source));
RTC_DCHECK_EQ(SamplesPerChannel(destination), SamplesPerChannel(source));
RTC_DCHECK_GE(destination.data().size(), source.data().size());
memcpy(&destination[0], &source[0],
source.size() * sizeof(typename S::value_type));
}
} // namespace webrtc
#endif // API_AUDIO_AUDIO_VIEW_H_

View File

@ -17,6 +17,7 @@ if (rtc_include_tests) {
testonly = true testonly = true
sources = [ sources = [
"audio_frame_unittest.cc", "audio_frame_unittest.cc",
"audio_view_unittest.cc",
"echo_canceller3_config_unittest.cc", "echo_canceller3_config_unittest.cc",
] ]
deps = [ deps = [

View File

@ -19,7 +19,7 @@ namespace webrtc {
namespace { namespace {
bool AllSamplesAre(int16_t sample, rtc::ArrayView<const int16_t> samples) { bool AllSamplesAre(int16_t sample, InterleavedView<const int16_t> samples) {
for (const auto s : samples) { for (const auto s : samples) {
if (s != sample) { if (s != sample) {
return false; return false;
@ -34,10 +34,11 @@ bool AllSamplesAre(int16_t sample, const AudioFrame& frame) {
// Checks the values of samples in the AudioFrame buffer, regardless of whether // Checks the values of samples in the AudioFrame buffer, regardless of whether
// they're valid or not, and disregard the `muted()` state of the frame. // they're valid or not, and disregard the `muted()` state of the frame.
// I.e. use `max_16bit_samples()` instead of the audio properties // I.e. use `max_16bit_samples()` instead of `data_view().size()`
// `num_samples * samples_per_channel`.
bool AllBufferSamplesAre(int16_t sample, const AudioFrame& frame) { bool AllBufferSamplesAre(int16_t sample, const AudioFrame& frame) {
const auto* data = frame.data_view().data(); auto view = frame.data_view();
RTC_DCHECK(!view.empty());
const int16_t* data = &view.data()[0];
for (size_t i = 0; i < frame.max_16bit_samples(); ++i) { for (size_t i = 0; i < frame.max_16bit_samples(); ++i) {
if (data[i] != sample) { if (data[i] != sample) {
return false; return false;
@ -75,8 +76,9 @@ TEST(AudioFrameTest, UnmutedFrameIsInitiallyZeroed) {
AudioFrame frame; AudioFrame frame;
auto data = frame.mutable_data(kSamplesPerChannel, kNumChannelsMono); auto data = frame.mutable_data(kSamplesPerChannel, kNumChannelsMono);
EXPECT_FALSE(frame.muted()); EXPECT_FALSE(frame.muted());
EXPECT_TRUE(IsMono(data));
EXPECT_EQ(frame.data_view().size(), kSamplesPerChannel); EXPECT_EQ(frame.data_view().size(), kSamplesPerChannel);
EXPECT_EQ(data.size(), kSamplesPerChannel); EXPECT_EQ(SamplesPerChannel(data), kSamplesPerChannel);
EXPECT_TRUE(AllSamplesAre(0, frame)); EXPECT_TRUE(AllSamplesAre(0, frame));
} }

View File

@ -0,0 +1,158 @@
/*
* Copyright 2024 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/audio/audio_view.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr const float kFloatStepIncrease = 0.5f;
constexpr const int16_t kIntStepIncrease = 1;
template <typename T>
void Increment(float& t) {
t += kFloatStepIncrease;
}
template <typename T>
void Increment(int16_t& t) {
t += kIntStepIncrease;
}
// Fills a given buffer with monotonically increasing values.
template <typename T>
void FillBuffer(rtc::ArrayView<T> buffer) {
T value = {};
for (T& t : buffer) {
Increment<T>(value);
t = value;
}
}
} // namespace
TEST(AudioViewTest, MonoView) {
const size_t kArraySize = 100u;
int16_t arr[kArraySize];
FillBuffer(rtc::ArrayView<int16_t>(arr));
MonoView<int16_t> mono(arr);
MonoView<const int16_t> const_mono(arr);
EXPECT_EQ(mono.size(), kArraySize);
EXPECT_EQ(const_mono.size(), kArraySize);
EXPECT_EQ(&mono[0], &const_mono[0]);
EXPECT_EQ(mono[0], arr[0]);
EXPECT_EQ(1u, NumChannels(mono));
EXPECT_EQ(1u, NumChannels(const_mono));
EXPECT_EQ(100u, SamplesPerChannel(mono));
EXPECT_TRUE(IsMono(mono));
EXPECT_TRUE(IsMono(const_mono));
}
TEST(AudioViewTest, InterleavedView) {
const size_t kArraySize = 100u;
int16_t arr[kArraySize];
FillBuffer(rtc::ArrayView<int16_t>(arr));
InterleavedView<int16_t> interleaved(arr, kArraySize, 1);
EXPECT_EQ(NumChannels(interleaved), 1u);
EXPECT_TRUE(IsMono(interleaved));
EXPECT_EQ(SamplesPerChannel(interleaved), kArraySize);
EXPECT_EQ(interleaved.AsMono().size(), kArraySize);
EXPECT_EQ(&interleaved.AsMono()[0], &arr[0]);
EXPECT_EQ(interleaved.AsMono(), interleaved.data());
// Basic iterator test.
int i = 0;
for (auto s : interleaved) {
EXPECT_EQ(s, arr[i++]);
}
interleaved = InterleavedView<int16_t>(arr, kArraySize / 2, 2);
InterleavedView<const int16_t> const_interleaved(arr, 50, 2);
EXPECT_EQ(NumChannels(interleaved), 2u);
EXPECT_EQ(NumChannels(const_interleaved), 2u);
EXPECT_EQ(&const_interleaved[0], &interleaved[0]);
EXPECT_TRUE(!IsMono(interleaved));
EXPECT_TRUE(!IsMono(const_interleaved));
EXPECT_EQ(SamplesPerChannel(interleaved), 50u);
EXPECT_EQ(SamplesPerChannel(const_interleaved), 50u);
interleaved = InterleavedView<int16_t>(arr, 4);
EXPECT_EQ(NumChannels(interleaved), 4u);
InterleavedView<const int16_t> const_interleaved2(interleaved);
EXPECT_EQ(NumChannels(const_interleaved2), 4u);
EXPECT_EQ(SamplesPerChannel(interleaved), 25u);
const_interleaved2 = interleaved;
EXPECT_EQ(NumChannels(const_interleaved2), 4u);
EXPECT_EQ(&const_interleaved2[0], &interleaved[0]);
}
TEST(AudioViewTest, DeinterleavedView) {
const size_t kArraySize = 100u;
int16_t arr[kArraySize] = {};
DeinterleavedView<int16_t> di(arr, 10, 10);
DeinterleavedView<const int16_t> const_di(arr, 10, 10);
EXPECT_EQ(NumChannels(di), 10u);
EXPECT_EQ(SamplesPerChannel(di), 10u);
EXPECT_TRUE(!IsMono(di));
EXPECT_EQ(const_di[5][1], di[5][1]); // Spot check.
// For deinterleaved views, although they may hold multiple channels,
// the AsMono() method is still available and returns the first channel
// in the view.
auto mono_ch = di.AsMono();
EXPECT_EQ(NumChannels(mono_ch), 1u);
EXPECT_EQ(SamplesPerChannel(mono_ch), 10u);
EXPECT_EQ(di[0], mono_ch); // first channel should be same as mono.
di = DeinterleavedView<int16_t>(arr, 50, 2);
// Test assignment.
const_di = di;
EXPECT_EQ(&di.AsMono()[0], &const_di.AsMono()[0]);
// Access the second channel in the deinterleaved view.
// The start of the second channel should be directly after the first channel.
// The memory width of each channel is held by the `stride()` member which
// by default is the same value as samples per channel.
mono_ch = di[1];
EXPECT_EQ(SamplesPerChannel(mono_ch), 50u);
EXPECT_EQ(&mono_ch[0], &arr[di.samples_per_channel()]);
}
TEST(AudioViewTest, CopySamples) {
const size_t kArraySize = 100u;
int16_t source_arr[kArraySize] = {};
int16_t dest_arr[kArraySize] = {};
FillBuffer(rtc::ArrayView<int16_t>(source_arr));
InterleavedView<const int16_t> source(source_arr, 2);
InterleavedView<int16_t> destination(dest_arr, 2);
static_assert(IsInterleavedView(source) == IsInterleavedView(destination),
"");
// Values in `dest_arr` should all be 0, none of the values in `source_arr`
// should be 0.
for (size_t i = 0; i < kArraySize; ++i) {
ASSERT_EQ(dest_arr[i], 0);
ASSERT_NE(source_arr[i], 0);
}
CopySamples(destination, source);
for (size_t i = 0; i < kArraySize; ++i) {
ASSERT_EQ(dest_arr[i], source_arr[i]) << "i == " << i;
}
}
} // namespace webrtc

View File

@ -70,20 +70,21 @@ void ProcessCaptureFrame(uint32_t delay_ms,
int Resample(const AudioFrame& frame, int Resample(const AudioFrame& frame,
const int destination_sample_rate, const int destination_sample_rate,
PushResampler<int16_t>* resampler, PushResampler<int16_t>* resampler,
rtc::ArrayView<int16_t> destination) { InterleavedView<int16_t> destination) {
TRACE_EVENT2("webrtc", "Resample", "frame sample rate", frame.sample_rate_hz_, TRACE_EVENT2("webrtc", "Resample", "frame sample rate", frame.sample_rate_hz_,
"destination_sample_rate", destination_sample_rate); "destination_sample_rate", destination_sample_rate);
const int number_of_channels = static_cast<int>(frame.num_channels_); const size_t target_number_of_samples_per_channel =
const int target_number_of_samples_per_channel = SampleRateToDefaultChannelSize(destination_sample_rate);
destination_sample_rate / 100; RTC_DCHECK_EQ(NumChannels(destination), frame.num_channels_);
RTC_CHECK_EQ(destination.size(), RTC_DCHECK_EQ(SamplesPerChannel(destination),
target_number_of_samples_per_channel);
RTC_CHECK_EQ(destination.data().size(),
frame.num_channels_ * target_number_of_samples_per_channel); frame.num_channels_ * target_number_of_samples_per_channel);
resampler->InitializeIfNeeded(frame.sample_rate_hz_, destination_sample_rate, resampler->InitializeIfNeeded(frame.sample_rate_hz_, destination_sample_rate,
number_of_channels); static_cast<int>(frame.num_channels()));
// TODO(yujo): make resampler take an AudioFrame, and add special case // TODO(yujo): Add special case handling of muted frames.
// handling of muted frames.
return resampler->Resample(frame.data_view(), destination); return resampler->Resample(frame.data_view(), destination);
} }
} // namespace } // namespace
@ -235,8 +236,8 @@ int32_t AudioTransportImpl::NeedMorePlayData(const size_t nSamples,
nSamplesOut = nSamplesOut =
Resample(mixed_frame_, samplesPerSec, &render_resampler_, Resample(mixed_frame_, samplesPerSec, &render_resampler_,
rtc::ArrayView<int16_t>(static_cast<int16_t*>(audioSamples), InterleavedView<int16_t>(static_cast<int16_t*>(audioSamples),
nSamples * nChannels)); nSamples, nChannels));
RTC_DCHECK_EQ(nSamplesOut, nChannels * nSamples); RTC_DCHECK_EQ(nSamplesOut, nChannels * nSamples);
return 0; return 0;
} }
@ -268,8 +269,8 @@ void AudioTransportImpl::PullRenderData(int bits_per_sample,
int output_samples = int output_samples =
Resample(mixed_frame_, sample_rate, &render_resampler_, Resample(mixed_frame_, sample_rate, &render_resampler_,
rtc::ArrayView<int16_t>(static_cast<int16_t*>(audio_data), InterleavedView<int16_t>(static_cast<int16_t*>(audio_data),
number_of_channels * number_of_frames)); number_of_frames, number_of_channels));
RTC_DCHECK_EQ(output_samples, number_of_channels * number_of_frames); RTC_DCHECK_EQ(output_samples, number_of_channels * number_of_frames);
} }

View File

@ -50,11 +50,10 @@ void RemixAndResample(const int16_t* src_data,
<< "dst_frame->num_channels_: " << dst_frame->num_channels_; << "dst_frame->num_channels_: " << dst_frame->num_channels_;
AudioFrameOperations::DownmixChannels( AudioFrameOperations::DownmixChannels(
rtc::ArrayView<const int16_t>(src_data, InterleavedView<const int16_t>(src_data, samples_per_channel,
num_channels * samples_per_channel), num_channels),
num_channels, samples_per_channel, dst_frame->num_channels_, InterleavedView<int16_t>(&downmixed_audio[0], samples_per_channel,
rtc::ArrayView<int16_t>(&downmixed_audio[0], dst_frame->num_channels_ * dst_frame->num_channels_));
samples_per_channel));
audio_ptr = downmixed_audio; audio_ptr = downmixed_audio;
audio_ptr_num_channels = dst_frame->num_channels_; audio_ptr_num_channels = dst_frame->num_channels_;
} }
@ -71,30 +70,32 @@ void RemixAndResample(const int16_t* src_data,
// resampler to return output length without doing the resample, so we know // resampler to return output length without doing the resample, so we know
// how much to zero here; or 2) make resampler accept a hint that the input is // how much to zero here; or 2) make resampler accept a hint that the input is
// zeroed. // zeroed.
const size_t src_length = samples_per_channel * audio_ptr_num_channels;
// Ensure the `samples_per_channel_` member is set correctly based on the // Ensure the `samples_per_channel_` member is set correctly based on the
// destination sample rate, number of channels and assumed 10ms buffer size. // destination sample rate, number of channels and assumed 10ms buffer size.
// TODO(tommi): Could we rather assume that this has been done by the caller? // TODO(tommi): Could we rather assume that this has been done by the caller?
dst_frame->SetSampleRateAndChannelSize(dst_frame->sample_rate_hz_); dst_frame->SetSampleRateAndChannelSize(dst_frame->sample_rate_hz_);
InterleavedView<const int16_t> src_view(audio_ptr, samples_per_channel,
audio_ptr_num_channels);
// Stash away the originally requested number of channels. Then provide
// `dst_frame` as a target buffer with the same number of channels as the
// source.
auto original_dst_number_of_channels = dst_frame->num_channels_;
int out_length = resampler->Resample( int out_length = resampler->Resample(
rtc::ArrayView<const int16_t>(audio_ptr, src_length), src_view, dst_frame->mutable_data(dst_frame->samples_per_channel_,
dst_frame->mutable_data(dst_frame->samples_per_channel_, src_view.num_channels()));
dst_frame->num_channels_)); RTC_CHECK_NE(out_length, -1) << "Resample failed: audio_ptr = " << audio_ptr
if (out_length == -1) { << ", src_length = " << src_view.data().size();
RTC_FATAL() << "Resample failed: audio_ptr = " << audio_ptr
<< ", src_length = " << src_length
<< ", dst_frame->mutable_data() = "
<< dst_frame->mutable_data();
}
dst_frame->samples_per_channel_ = out_length / audio_ptr_num_channels; RTC_DCHECK_EQ(dst_frame->samples_per_channel(),
out_length / audio_ptr_num_channels);
// Upmix after resampling. // Upmix after resampling.
if (num_channels == 1 && dst_frame->num_channels_ == 2) { if (num_channels == 1 && original_dst_number_of_channels == 2) {
// The audio in dst_frame really is mono at this point; MonoToStereo will // The audio in dst_frame really is mono at this point; MonoToStereo will
// set this back to stereo. // set this back to stereo.
dst_frame->num_channels_ = 1; RTC_DCHECK_EQ(dst_frame->num_channels_, 1);
AudioFrameOperations::UpmixChannels(2, dst_frame); AudioFrameOperations::UpmixChannels(2, dst_frame);
} }
} }

View File

@ -29,15 +29,17 @@ const float kMuteFadeInc = 1.0f / kMuteFadeFrames;
} // namespace } // namespace
void AudioFrameOperations::QuadToStereo(rtc::ArrayView<const int16_t> src_audio, void AudioFrameOperations::QuadToStereo(
size_t samples_per_channel, InterleavedView<const int16_t> src_audio,
rtc::ArrayView<int16_t> dst_audio) { InterleavedView<int16_t> dst_audio) {
RTC_DCHECK_EQ(src_audio.size(), samples_per_channel * 4); RTC_DCHECK_EQ(NumChannels(src_audio), 4);
RTC_DCHECK_EQ(dst_audio.size(), samples_per_channel * 2); RTC_DCHECK_EQ(NumChannels(dst_audio), 2);
for (size_t i = 0; i < samples_per_channel; i++) { RTC_DCHECK_EQ(SamplesPerChannel(src_audio), SamplesPerChannel(dst_audio));
dst_audio[i * 2] = for (size_t i = 0; i < SamplesPerChannel(src_audio); ++i) {
auto dst_frame = i * 2;
dst_audio[dst_frame] =
(static_cast<int32_t>(src_audio[4 * i]) + src_audio[4 * i + 1]) >> 1; (static_cast<int32_t>(src_audio[4 * i]) + src_audio[4 * i + 1]) >> 1;
dst_audio[i * 2 + 1] = dst_audio[dst_frame + 1] =
(static_cast<int32_t>(src_audio[4 * i + 2]) + src_audio[4 * i + 3]) >> (static_cast<int32_t>(src_audio[4 * i + 2]) + src_audio[4 * i + 3]) >>
1; 1;
} }
@ -52,9 +54,12 @@ int AudioFrameOperations::QuadToStereo(AudioFrame* frame) {
AudioFrame::kMaxDataSizeSamples); AudioFrame::kMaxDataSizeSamples);
if (!frame->muted()) { if (!frame->muted()) {
auto current_data = frame->data_view(); // Note that `src` and `dst` will map in to the same buffer, but the call
QuadToStereo(current_data, frame->samples_per_channel_, // to `mutable_data()` changes the layout of `frame`, so `src` and `dst`
frame->mutable_data(frame->samples_per_channel_, 2)); // will have different dimensions (important to call `data_view()` first).
auto src = frame->data_view();
auto dst = frame->mutable_data(frame->samples_per_channel_, 2);
QuadToStereo(src, dst);
} else { } else {
frame->num_channels_ = 2; frame->num_channels_ = 2;
} }
@ -63,21 +68,19 @@ int AudioFrameOperations::QuadToStereo(AudioFrame* frame) {
} }
void AudioFrameOperations::DownmixChannels( void AudioFrameOperations::DownmixChannels(
rtc::ArrayView<const int16_t> src_audio, InterleavedView<const int16_t> src_audio,
size_t src_channels, InterleavedView<int16_t> dst_audio) {
size_t samples_per_channel, RTC_DCHECK_EQ(SamplesPerChannel(src_audio), SamplesPerChannel(dst_audio));
size_t dst_channels, if (NumChannels(src_audio) > 1 && IsMono(dst_audio)) {
rtc::ArrayView<int16_t> dst_audio) { // TODO(tommi): change DownmixInterleavedToMono to support InterleavedView
RTC_DCHECK_EQ(src_audio.size(), src_channels * samples_per_channel); // and MonoView.
RTC_DCHECK_EQ(dst_audio.size(), dst_channels * samples_per_channel); DownmixInterleavedToMono(&src_audio.data()[0], SamplesPerChannel(src_audio),
if (src_channels > 1 && dst_channels == 1) { NumChannels(src_audio), &dst_audio.data()[0]);
DownmixInterleavedToMono(src_audio.data(), samples_per_channel, } else if (NumChannels(src_audio) == 4 && NumChannels(dst_audio) == 2) {
src_channels, &dst_audio[0]); QuadToStereo(src_audio, dst_audio);
} else if (src_channels == 4 && dst_channels == 2) {
QuadToStereo(src_audio, samples_per_channel, dst_audio);
} else { } else {
RTC_DCHECK_NOTREACHED() << "src_channels: " << src_channels RTC_DCHECK_NOTREACHED() << "src_channels: " << NumChannels(src_audio)
<< ", dst_channels: " << dst_channels; << ", dst_channels: " << NumChannels(dst_audio);
} }
} }

View File

@ -28,9 +28,8 @@ class AudioFrameOperations {
// Downmixes 4 channels `src_audio` to stereo `dst_audio`. This is an in-place // Downmixes 4 channels `src_audio` to stereo `dst_audio`. This is an in-place
// operation, meaning `src_audio` and `dst_audio` may point to the same // operation, meaning `src_audio` and `dst_audio` may point to the same
// buffer. // buffer.
static void QuadToStereo(rtc::ArrayView<const int16_t> src_audio, static void QuadToStereo(InterleavedView<const int16_t> src_audio,
size_t samples_per_channel, InterleavedView<int16_t> dst_audio);
rtc::ArrayView<int16_t> dst_audio);
// `frame.num_channels_` will be updated. This version checks that // `frame.num_channels_` will be updated. This version checks that
// `num_channels_` is 4 channels. // `num_channels_` is 4 channels.
@ -40,11 +39,8 @@ class AudioFrameOperations {
// This is an in-place operation, meaning `src_audio` and `dst_audio` // This is an in-place operation, meaning `src_audio` and `dst_audio`
// may point to the same buffer. Supported channel combinations are // may point to the same buffer. Supported channel combinations are
// Stereo to Mono, Quad to Mono, and Quad to Stereo. // Stereo to Mono, Quad to Mono, and Quad to Stereo.
static void DownmixChannels(rtc::ArrayView<const int16_t> src_audio, static void DownmixChannels(InterleavedView<const int16_t> src_audio,
size_t src_channels, InterleavedView<int16_t> dst_audio);
size_t samples_per_channel,
size_t dst_channels,
rtc::ArrayView<int16_t> dst_audio);
// `frame.num_channels_` will be updated. This version checks that // `frame.num_channels_` will be updated. This version checks that
// `num_channels_` and `dst_channels` are valid and performs relevant downmix. // `num_channels_` and `dst_channels` are valid and performs relevant downmix.

View File

@ -31,7 +31,7 @@ void SetFrameData(int16_t ch1,
int16_t ch3, int16_t ch3,
int16_t ch4, int16_t ch4,
AudioFrame* frame) { AudioFrame* frame) {
rtc::ArrayView<int16_t> frame_data = InterleavedView<int16_t> frame_data =
frame->mutable_data(frame->samples_per_channel_, 4); frame->mutable_data(frame->samples_per_channel_, 4);
for (size_t i = 0; i < frame->samples_per_channel_ * 4; i += 4) { for (size_t i = 0; i < frame->samples_per_channel_ * 4; i += 4) {
frame_data[i] = ch1; frame_data[i] = ch1;
@ -42,7 +42,7 @@ void SetFrameData(int16_t ch1,
} }
void SetFrameData(int16_t left, int16_t right, AudioFrame* frame) { void SetFrameData(int16_t left, int16_t right, AudioFrame* frame) {
rtc::ArrayView<int16_t> frame_data = InterleavedView<int16_t> frame_data =
frame->mutable_data(frame->samples_per_channel_, 2); frame->mutable_data(frame->samples_per_channel_, 2);
for (size_t i = 0; i < frame->samples_per_channel_ * 2; i += 2) { for (size_t i = 0; i < frame->samples_per_channel_ * 2; i += 2) {
frame_data[i] = left; frame_data[i] = left;
@ -51,7 +51,7 @@ void SetFrameData(int16_t left, int16_t right, AudioFrame* frame) {
} }
void SetFrameData(int16_t data, AudioFrame* frame) { void SetFrameData(int16_t data, AudioFrame* frame) {
rtc::ArrayView<int16_t> frame_data = InterleavedView<int16_t> frame_data =
frame->mutable_data(frame->samples_per_channel_, 1); frame->mutable_data(frame->samples_per_channel_, 1);
for (size_t i = 0; i < frame->samples_per_channel_ * frame->num_channels_; for (size_t i = 0; i < frame->samples_per_channel_ * frame->num_channels_;
i++) { i++) {
@ -167,7 +167,7 @@ TEST_F(AudioFrameOperationsTest, StereoToMonoBufferSucceeds) {
SetFrameData(4, 2, &frame_); SetFrameData(4, 2, &frame_);
AudioFrameOperations::DownmixChannels( AudioFrameOperations::DownmixChannels(
frame_.data_view(), 2, frame_.samples_per_channel_, 1, frame_.data_view(),
target_frame.mutable_data(frame_.samples_per_channel_, 1)); target_frame.mutable_data(frame_.samples_per_channel_, 1));
AudioFrame mono_frame; AudioFrame mono_frame;
@ -211,7 +211,7 @@ TEST_F(AudioFrameOperationsTest, QuadToMonoBufferSucceeds) {
SetFrameData(4, 2, 6, 8, &frame_); SetFrameData(4, 2, 6, 8, &frame_);
AudioFrameOperations::DownmixChannels( AudioFrameOperations::DownmixChannels(
frame_.data_view(), 4, frame_.samples_per_channel_, 1, frame_.data_view(),
target_frame.mutable_data(frame_.samples_per_channel_, 1)); target_frame.mutable_data(frame_.samples_per_channel_, 1));
AudioFrame mono_frame; AudioFrame mono_frame;
mono_frame.samples_per_channel_ = 320; mono_frame.samples_per_channel_ = 320;
@ -259,7 +259,7 @@ TEST_F(AudioFrameOperationsTest, QuadToStereoBufferSucceeds) {
SetFrameData(4, 2, 6, 8, &frame_); SetFrameData(4, 2, 6, 8, &frame_);
AudioFrameOperations::QuadToStereo( AudioFrameOperations::QuadToStereo(
frame_.data_view(), frame_.samples_per_channel_, frame_.data_view(),
target_frame.mutable_data(frame_.samples_per_channel_, 2)); target_frame.mutable_data(frame_.samples_per_channel_, 2));
AudioFrame stereo_frame; AudioFrame stereo_frame;
stereo_frame.samples_per_channel_ = 320; stereo_frame.samples_per_channel_ = 320;

View File

@ -46,6 +46,7 @@ rtc_library("common_audio") {
":common_audio_c", ":common_audio_c",
":sinc_resampler", ":sinc_resampler",
"../api:array_view", "../api:array_view",
"../api/audio:audio_frame_api",
"../rtc_base:checks", "../rtc_base:checks",
"../rtc_base:gtest_prod", "../rtc_base:gtest_prod",
"../rtc_base:logging", "../rtc_base:logging",

View File

@ -14,7 +14,7 @@
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "api/array_view.h" #include "api/audio/audio_view.h"
namespace webrtc { namespace webrtc {
@ -37,7 +37,7 @@ class PushResampler {
// Returns the total number of samples provided in destination (e.g. 32 kHz, // Returns the total number of samples provided in destination (e.g. 32 kHz,
// 2 channel audio gives 640 samples). // 2 channel audio gives 640 samples).
int Resample(rtc::ArrayView<const T> src, rtc::ArrayView<T> dst); int Resample(InterleavedView<const T> src, InterleavedView<T> dst);
private: private:
int src_sample_rate_hz_; int src_sample_rate_hz_;

View File

@ -15,6 +15,7 @@
#include <memory> #include <memory>
#include "api/audio/audio_frame.h"
#include "common_audio/include/audio_util.h" #include "common_audio/include/audio_util.h"
#include "common_audio/resampler/push_sinc_resampler.h" #include "common_audio/resampler/push_sinc_resampler.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
@ -73,47 +74,45 @@ int PushResampler<T>::InitializeIfNeeded(int src_sample_rate_hz,
} }
template <typename T> template <typename T>
int PushResampler<T>::Resample(rtc::ArrayView<const T> src, int PushResampler<T>::Resample(InterleavedView<const T> src,
rtc::ArrayView<T> dst) { InterleavedView<T> dst) {
// These checks used to be factored out of this template function due to RTC_DCHECK_EQ(NumChannels(src), num_channels_);
// Windows debug build issues with clang. http://crbug.com/615050 RTC_DCHECK_EQ(NumChannels(dst), num_channels_);
const size_t src_size_10ms = (src_sample_rate_hz_ / 100) * num_channels_; RTC_DCHECK_EQ(SamplesPerChannel(src),
const size_t dst_size_10ms = (dst_sample_rate_hz_ / 100) * num_channels_; SampleRateToDefaultChannelSize(src_sample_rate_hz_));
RTC_DCHECK_EQ(src.size(), src_size_10ms); RTC_DCHECK_EQ(SamplesPerChannel(dst),
RTC_DCHECK_GE(dst.size(), dst_size_10ms); SampleRateToDefaultChannelSize(dst_sample_rate_hz_));
if (src_sample_rate_hz_ == dst_sample_rate_hz_) { if (src_sample_rate_hz_ == dst_sample_rate_hz_) {
// The old resampler provides this memcpy facility in the case of matching // The old resampler provides this memcpy facility in the case of matching
// sample rates, so reproduce it here for the sinc resampler. // sample rates, so reproduce it here for the sinc resampler.
memcpy(dst.data(), src.data(), src.size() * sizeof(T)); CopySamples(dst, src);
return static_cast<int>(src.size()); return static_cast<int>(src.data().size());
} }
const size_t src_length_mono = src.size() / num_channels_;
const size_t dst_capacity_mono = dst.size() / num_channels_;
for (size_t ch = 0; ch < num_channels_; ++ch) { for (size_t ch = 0; ch < num_channels_; ++ch) {
channel_data_array_[ch] = channel_resamplers_[ch].source.data(); channel_data_array_[ch] = channel_resamplers_[ch].source.data();
} }
Deinterleave(src.data(), src_length_mono, num_channels_, // TODO: b/335805780 - Deinterleave should accept InterleavedView<> as input.
Deinterleave(&src.data()[0], src.samples_per_channel(), src.num_channels(),
channel_data_array_.data()); channel_data_array_.data());
size_t dst_length_mono = 0;
for (auto& resampler : channel_resamplers_) { for (auto& resampler : channel_resamplers_) {
dst_length_mono = resampler.resampler->Resample( size_t dst_length_mono = resampler.resampler->Resample(
resampler.source.data(), src_length_mono, resampler.destination.data(), resampler.source.data(), src.samples_per_channel(),
dst_capacity_mono); resampler.destination.data(), dst.samples_per_channel());
RTC_DCHECK_EQ(dst_length_mono, dst.samples_per_channel());
} }
for (size_t ch = 0; ch < num_channels_; ++ch) { for (size_t ch = 0; ch < num_channels_; ++ch) {
channel_data_array_[ch] = channel_resamplers_[ch].destination.data(); channel_data_array_[ch] = channel_resamplers_[ch].destination.data();
} }
Interleave(channel_data_array_.data(), dst_length_mono, num_channels_, // TODO: b/335805780 - Interleave should accept InterleavedView<> as dst.
dst.data()); Interleave(channel_data_array_.data(), dst.samples_per_channel(),
return static_cast<int>(dst_length_mono * num_channels_); num_channels_, &dst[0]);
return static_cast<int>(dst.size());
} }
// Explictly generate required instantiations. // Explictly generate required instantiations.

View File

@ -28,11 +28,8 @@ namespace webrtc {
TEST(AcmRemixing, DownMixFrame) { TEST(AcmRemixing, DownMixFrame) {
std::vector<int16_t> out(480, 0); std::vector<int16_t> out(480, 0);
AudioFrame in; AudioFrame in;
in.num_channels_ = 2; InterleavedView<int16_t> const in_data = in.mutable_data(480, 2);
in.samples_per_channel_ = 480; for (size_t k = 0; k < in_data.samples_per_channel(); ++k) {
int16_t* const in_data = in.mutable_data();
for (size_t k = 0; k < in.samples_per_channel_; ++k) {
in_data[2 * k] = 2; in_data[2 * k] = 2;
in_data[2 * k + 1] = 0; in_data[2 * k + 1] = 0;
} }

View File

@ -12,6 +12,7 @@
#include <string.h> #include <string.h>
#include "api/audio/audio_frame.h"
#include "rtc_base/logging.h" #include "rtc_base/logging.h"
namespace webrtc { namespace webrtc {
@ -27,14 +28,20 @@ int ACMResampler::Resample10Msec(const int16_t* in_audio,
size_t num_audio_channels, size_t num_audio_channels,
size_t out_capacity_samples, size_t out_capacity_samples,
int16_t* out_audio) { int16_t* out_audio) {
size_t in_length = in_freq_hz * num_audio_channels / 100; InterleavedView<const int16_t> src(
in_audio, SampleRateToDefaultChannelSize(in_freq_hz), num_audio_channels);
InterleavedView<int16_t> dst(out_audio,
SampleRateToDefaultChannelSize(out_freq_hz),
num_audio_channels);
RTC_DCHECK_GE(out_capacity_samples, dst.size());
if (in_freq_hz == out_freq_hz) { if (in_freq_hz == out_freq_hz) {
if (out_capacity_samples < in_length) { if (out_capacity_samples < src.data().size()) {
RTC_DCHECK_NOTREACHED(); RTC_DCHECK_NOTREACHED();
return -1; return -1;
} }
memcpy(out_audio, in_audio, in_length * sizeof(int16_t)); CopySamples(dst, src);
return static_cast<int>(in_length / num_audio_channels); RTC_DCHECK_EQ(dst.samples_per_channel(), src.samples_per_channel());
return static_cast<int>(dst.samples_per_channel());
} }
if (resampler_.InitializeIfNeeded(in_freq_hz, out_freq_hz, if (resampler_.InitializeIfNeeded(in_freq_hz, out_freq_hz,
@ -45,17 +52,16 @@ int ACMResampler::Resample10Msec(const int16_t* in_audio,
return -1; return -1;
} }
int out_length = resampler_.Resample( int out_length = resampler_.Resample(src, dst);
rtc::ArrayView<const int16_t>(in_audio, in_length),
rtc::ArrayView<int16_t>(out_audio, out_capacity_samples));
if (out_length == -1) { if (out_length == -1) {
RTC_LOG(LS_ERROR) << "Resample(" << in_audio << ", " << in_length << ", " RTC_LOG(LS_ERROR) << "Resample(" << in_audio << ", " << src.data().size()
<< out_audio << ", " << out_capacity_samples << ", " << out_audio << ", " << out_capacity_samples
<< ") failed."; << ") failed.";
return -1; return -1;
} }
RTC_DCHECK_EQ(out_length, dst.size());
return static_cast<int>(out_length / num_audio_channels); RTC_DCHECK_EQ(out_length / num_audio_channels, dst.samples_per_channel());
return static_cast<int>(dst.samples_per_channel());
} }
} // namespace acm2 } // namespace acm2

View File

@ -24,6 +24,7 @@ class ACMResampler {
ACMResampler(); ACMResampler();
~ACMResampler(); ~ACMResampler();
// TODO: b/335805780 - Change to accept InterleavedView<>.
int Resample10Msec(const int16_t* in_audio, int Resample10Msec(const int16_t* in_audio,
int in_freq_hz, int in_freq_hz,
int out_freq_hz, int out_freq_hz,

View File

@ -263,8 +263,7 @@ class AudioCodingModuleTestOldApiDeathTest
TEST_F(AudioCodingModuleTestOldApiDeathTest, FailOnZeroDesiredFrequency) { TEST_F(AudioCodingModuleTestOldApiDeathTest, FailOnZeroDesiredFrequency) {
AudioFrame audio_frame; AudioFrame audio_frame;
bool muted; bool muted;
RTC_EXPECT_DEATH(acm_receiver_->GetAudio(0, &audio_frame, &muted), RTC_EXPECT_DEATH(acm_receiver_->GetAudio(0, &audio_frame, &muted), "");
"dst_sample_rate_hz");
} }
#endif #endif

View File

@ -104,7 +104,16 @@ float VoiceActivityDetectorWrapper::Analyze(AudioFrameView<const float> frame) {
} }
// Resample the first channel of `frame`. // Resample the first channel of `frame`.
RTC_DCHECK_EQ(frame.samples_per_channel(), frame_size_); RTC_DCHECK_EQ(frame.samples_per_channel(), frame_size_);
resampler_.Resample(frame.channel(0), resampled_buffer_);
// TODO: b/335805780 - channel() should return a MonoView<> which there
// should be a Resample() implementation for. There's no need to
// "deinterleave" a mono buffer, which is what Resample() currently does,
// so here we should be able to directly resample the channel buffer.
auto channel = frame.channel(0);
InterleavedView<const float> src(channel.data(), channel.size(), 1);
InterleavedView<float> dst(resampled_buffer_.data(), resampled_buffer_.size(),
1);
resampler_.Resample(src, dst);
return vad_->Analyze(resampled_buffer_); return vad_->Analyze(resampled_buffer_);
} }

View File

@ -2150,10 +2150,12 @@ TEST_P(AudioProcessingTest, Formats) {
ASSERT_TRUE(out_file != NULL); ASSERT_TRUE(out_file != NULL);
ASSERT_TRUE(ref_file != NULL); ASSERT_TRUE(ref_file != NULL);
const size_t ref_length = const size_t ref_samples_per_channel =
AudioProcessing::GetFrameSize(ref_rate) * out_num; AudioProcessing::GetFrameSize(ref_rate);
const size_t out_length = const size_t ref_length = ref_samples_per_channel * out_num;
AudioProcessing::GetFrameSize(out_rate) * out_num; const size_t out_samples_per_channel =
AudioProcessing::GetFrameSize(out_rate);
const size_t out_length = out_samples_per_channel * out_num;
// Data from the reference file. // Data from the reference file.
std::unique_ptr<float[]> ref_data(new float[ref_length]); std::unique_ptr<float[]> ref_data(new float[ref_length]);
// Data from the output file. // Data from the output file.
@ -2196,10 +2198,12 @@ TEST_P(AudioProcessingTest, Formats) {
if (out_rate != ref_rate) { if (out_rate != ref_rate) {
// Resample the output back to its internal processing rate if // Resample the output back to its internal processing rate if
// necessary. // necessary.
InterleavedView<const float> src(out_ptr, out_samples_per_channel,
out_num);
InterleavedView<float> dst(cmp_data.get(), ref_samples_per_channel,
out_num);
ASSERT_EQ(ref_length, ASSERT_EQ(ref_length,
static_cast<size_t>(resampler.Resample( static_cast<size_t>(resampler.Resample(src, dst)));
rtc::ArrayView<const float>(out_ptr, out_length),
rtc::ArrayView<float>(cmp_data.get(), ref_length))));
out_ptr = cmp_data.get(); out_ptr = cmp_data.get();
} }