APM quality assessment tool, signal processing tools.
BUG=webrtc:7218 NOTRY=True Review-Url: https://codereview.webrtc.org/2715763003 Cr-Commit-Position: refs/heads/master@{#17047}
This commit is contained in:
parent
ef3162c3f1
commit
21debb3ae8
@ -38,6 +38,7 @@ copy("lib") {
|
||||
"quality_assessment/eval_scores.py",
|
||||
"quality_assessment/evaluation.py",
|
||||
"quality_assessment/noise_generation.py",
|
||||
"quality_assessment/signal_processing.py",
|
||||
"quality_assessment/simulation.py",
|
||||
]
|
||||
visibility = [ ":*" ] # Only targets in this file can depend on this.
|
||||
|
||||
@ -10,6 +10,7 @@ import logging
|
||||
import os
|
||||
|
||||
from .data_access import ScoreFile
|
||||
from .signal_processing import SignalProcessingUtils
|
||||
|
||||
class EvaluationScore(object):
|
||||
|
||||
@ -53,13 +54,13 @@ class EvaluationScore(object):
|
||||
|
||||
def _load_reference_signal(self):
|
||||
assert self._reference_signal_filepath is not None
|
||||
# TODO(alessio): load signal.
|
||||
self._reference_signal = None
|
||||
self._reference_signal = SignalProcessingUtils.load_wav(
|
||||
self._reference_signal_filepath)
|
||||
|
||||
def _load_tested_signal(self):
|
||||
assert self._tested_signal_filepath is not None
|
||||
# TODO(alessio): load signal.
|
||||
self._tested_signal = None
|
||||
self._tested_signal = SignalProcessingUtils.load_wav(
|
||||
self._tested_signal_filepath)
|
||||
|
||||
def run(self, output_path):
|
||||
self._output_filepath = os.path.join(output_path, 'score-{}.txt'.format(
|
||||
|
||||
@ -0,0 +1,148 @@
|
||||
# Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
||||
#
|
||||
# Use of this source code is governed by a BSD-style license
|
||||
# that can be found in the LICENSE file in the root of the source
|
||||
# tree. An additional intellectual property rights grant can be found
|
||||
# in the file PATENTS. All contributing project authors may
|
||||
# be found in the AUTHORS file in the root of the source tree.
|
||||
|
||||
import array
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import pydub
|
||||
import scipy.signal
|
||||
|
||||
class SignalProcessingUtils(object):
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def load_wav(cls, filepath, channels=1):
|
||||
"""
|
||||
Return:
|
||||
AudioSegment instance.
|
||||
"""
|
||||
return pydub.AudioSegment.from_file(
|
||||
filepath, format='wav', channels=channels)
|
||||
|
||||
@classmethod
|
||||
def save_wav(cls, output_filepath, signal):
|
||||
"""
|
||||
Args:
|
||||
output_filepath: string, output file path.
|
||||
signal: AudioSegment instance.
|
||||
"""
|
||||
return signal.export(output_filepath, format='wav')
|
||||
|
||||
@classmethod
|
||||
def count_samples(cls, signal):
|
||||
"""
|
||||
Number of samples per channel.
|
||||
|
||||
Args:
|
||||
signal: AudioSegment instance.
|
||||
"""
|
||||
number_of_samples = len(signal.get_array_of_samples())
|
||||
assert signal.channels > 0
|
||||
assert number_of_samples % signal.channels == 0
|
||||
return number_of_samples / signal.channels
|
||||
|
||||
@classmethod
|
||||
def generate_white_noise(cls, signal):
|
||||
"""
|
||||
Generate white noise with the same duration and in the same format as a
|
||||
given signal.
|
||||
|
||||
Args:
|
||||
signal: AudioSegment instance.
|
||||
|
||||
Return:
|
||||
AudioSegment instance.
|
||||
"""
|
||||
generator = pydub.generators.WhiteNoise(
|
||||
sample_rate=signal.frame_rate,
|
||||
bit_depth=signal.sample_width * 8)
|
||||
return generator.to_audio_segment(
|
||||
duration=len(signal),
|
||||
volume=0.0)
|
||||
|
||||
@classmethod
|
||||
def apply_impulse_response(cls, signal, impulse_response):
|
||||
# Get samples.
|
||||
assert signal.channels == 1, (
|
||||
'multiple-channel recordings not supported')
|
||||
samples = signal.get_array_of_samples()
|
||||
|
||||
# Convolve.
|
||||
logging.info('applying %d order impulse response to a signal lasting %d ms',
|
||||
len(impulse_response), len(signal))
|
||||
convolved_samples = scipy.signal.fftconvolve(
|
||||
in1=samples,
|
||||
in2=impulse_response,
|
||||
mode='full').astype(np.int16)
|
||||
logging.info('convolution computed')
|
||||
|
||||
# Cast.
|
||||
convolved_samples = array.array(signal.array_type, convolved_samples)
|
||||
|
||||
# Verify.
|
||||
logging.debug('signal length: %d samples', len(samples))
|
||||
logging.debug('convolved signal length: %d samples', len(convolved_samples))
|
||||
assert len(convolved_samples) > len(samples)
|
||||
|
||||
# Generate convolved signal AudioSegment instance.
|
||||
convolved_signal = pydub.AudioSegment(
|
||||
data=convolved_samples,
|
||||
metadata={
|
||||
'sample_width': signal.sample_width,
|
||||
'frame_rate': signal.frame_rate,
|
||||
'frame_width': signal.frame_width,
|
||||
'channels': signal.channels,
|
||||
})
|
||||
assert len(convolved_signal) > len(signal)
|
||||
|
||||
return convolved_signal
|
||||
|
||||
@classmethod
|
||||
def normalize(cls, signal):
|
||||
return signal.apply_gain(-signal.max_dBFS)
|
||||
|
||||
@classmethod
|
||||
def mix_signals(cls, signal_0, signal_1, target_snr=0.0,
|
||||
bln_pad_shortest=False):
|
||||
"""
|
||||
Mix two signals up to a desired SNR by scaling signal_0 (signal).
|
||||
|
||||
Args:
|
||||
signal_0: AudioSegment instance (signal).
|
||||
signal_1: AudioSegment instance (noise).
|
||||
target_snr: float (dB).
|
||||
bln_pad_shortest: if True, it pads the shortest signal with silence at the
|
||||
end.
|
||||
"""
|
||||
# Pad signal_1 (if necessary). If signal_0 is the shortest, the AudioSegment
|
||||
# overlay() method implictly pads signal_0. Hence, the only case to handle
|
||||
# is signal_1 shorter than signal_0 and bln_pad_shortest True.
|
||||
if bln_pad_shortest:
|
||||
signal_0_duration = len(signal_0)
|
||||
signal_1_duration = len(signal_1)
|
||||
logging.debug('mix signals with padding')
|
||||
logging.debug(' signal_0: %d ms', signal_0_duration)
|
||||
logging.debug(' signal_1: %d ms', signal_1_duration)
|
||||
padding_duration = signal_0_duration - signal_1_duration
|
||||
if padding_duration > 0: # That is signal_1_duration < signal_0_duration.
|
||||
logging.debug(' padding: %d ms', padding_duration)
|
||||
padding = pydub.AudioSegment.silent(
|
||||
duration=padding_duration,
|
||||
frame_rate=signal_0.frame_rate)
|
||||
logging.debug(' signal_1 (pre): %d ms', len(signal_1))
|
||||
signal_1 = signal_1 + padding
|
||||
logging.debug(' signal_1 (post): %d ms', len(signal_1))
|
||||
|
||||
# Mix signals using the target SNR.
|
||||
power_0 = float(signal_0.dBFS)
|
||||
power_1 = float(signal_1.dBFS)
|
||||
gain_db = target_snr + power_1 - power_0
|
||||
return cls.normalize(signal_1.overlay(signal_0.apply_gain(gain_db)))
|
||||
Loading…
x
Reference in New Issue
Block a user